What is the result of combining rotations about different axes?

In a "compound boost" we make a Lorentz transformation from frame 1 to frame 2, with some relative velocity, and follow that with a Lorentz transformation from frame 2 to frame 3 , with some other velocity. You were told in lecture that frames 1 and 3 are not just related by a single boost - for the sum of the relative velocities - in that there is also a rotation between frames 1 and 3 . This is a strange fact, and this short note is meant to make it less mysterious by giving you an example of a closely related effect involving just rotations.

In mechanics you learned that angular velocities indeed add as vectors. For example, if you are on a merry-go-round with angular velocity $\boldsymbol{\omega}_{12}$ relative to the earth, and spin a bicycle wheel with angular velocity ω_{23} relative to the merry-go-round, then the angular velocity of the wheel relative to the earth is $\boldsymbol{\omega}_{12}+\boldsymbol{\omega}_{23}$. But angular velocity corresponds to an infinitesimal rotation, and we should not be surprised to get a different result when we combine finite rotations.

Here is a simple example showing the failure of "addition of small rotations". Positive rotations (right-hand-rule) by angle θ about the x-axis are defined by the matrix

$$
R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \approx\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-\frac{\theta^{2}}{2} & -\theta \\
0 & \theta & 1-\frac{\theta^{2}}{2}
\end{array}\right)
$$

where the matrix on the right is the approximation that keeps terms up to second order in the small angle θ. For small rotations about the y-axis the corresponding matrices are

$$
R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \approx\left(\begin{array}{ccc}
1-\frac{\theta^{2}}{2} & 0 & \theta \\
0 & 1 & 0 \\
-\theta & 0 & 1-\frac{\theta^{2}}{2}
\end{array}\right)
$$

Now, if small rotations added perfectly, then the "compound rotation" $R_{y}(\theta) R_{x}(\theta)$ - first about $\hat{\mathbf{x}}$ and then about $\hat{\mathbf{y}}$ - would be a rotation about $\hat{\mathbf{n}}=(\hat{\mathbf{x}}+\hat{\mathbf{y}}) / \sqrt{2}$ by amount $\sqrt{2} \theta$. By rotating $\hat{\mathbf{n}}$ to $\hat{\mathbf{x}}$, with a z-axis rotation by $-\pi / 4$, performing the rotation $R_{x}(\sqrt{2} \theta)$ and rotating $\hat{\mathbf{x}}$ back to $\hat{\mathbf{n}}$ with a z rotation by $+\pi / 4$, we get the matrix for general rotations about $\hat{\mathbf{n}}$:

$$
R_{n}(\sqrt{2} \theta)=R_{z}(\pi / 4) R_{x}(\sqrt{2} \theta) R_{z}(-\pi / 4)
$$

Since

$$
R_{z}(\pm \pi / 4)=\left(\begin{array}{ccc}
1 / \sqrt{2} & \mp 1 / \sqrt{2} & 0 \\
\pm 1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

this rotation matrix works out to be

$$
\begin{aligned}
R_{n}(\sqrt{2} \theta) & =\left(\begin{array}{ccc}
\frac{1}{2} \cos (\sqrt{2} \theta)+\frac{1}{2} & \frac{1}{2}-\frac{1}{2} \cos (\sqrt{2} \theta) & \sin (\sqrt{2} \theta) / \sqrt{2} \\
\frac{1}{2}-\frac{1}{2} \cos (\sqrt{2} \theta) & \frac{1}{2} \cos (\sqrt{2} \theta)+\frac{1}{2} & -\sin (\sqrt{2} \theta) / \sqrt{2} \\
-\sin (\sqrt{2} \theta) / \sqrt{2} & \sin (\sqrt{2} \theta) / \sqrt{2} & \cos (\sqrt{2} \theta)
\end{array}\right) \\
& \approx\left(\begin{array}{ccc}
1-\frac{\theta^{2}}{2} & \frac{\theta^{2}}{2} & \theta \\
\frac{\theta^{2}}{2} & 1-\frac{\theta^{2}}{2} & -\theta \\
-\theta & \theta & 1-\theta^{2}
\end{array}\right) .
\end{aligned}
$$

If small rotations combined naively, then the inverse of this applied to the compound rotation $R_{y}(\theta) R_{x}(\theta)$ should give the identity transformation. Instead, for small θ we obtain

$$
R_{n}(-\sqrt{2} \theta) R_{y}(\theta) R_{x}(\theta) \approx\left(\begin{array}{ccc}
1 & \frac{\theta^{2}}{2} & 0 \\
-\frac{\theta^{2}}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

This is a rotation about the z-axis by angle $-\theta^{2} / 2$. When the compound rotation is generated in the opposite order,

$$
R_{n}(-\sqrt{2} \theta) R_{x}(\theta) R_{y}(\theta) \approx\left(\begin{array}{ccc}
1 & -\frac{\theta^{2}}{2} & 0 \\
\frac{\theta^{2}}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

the rotation about the z-axis is by angle $+\theta^{2} / 2$.
Notice that the correction to the naive addition-of-angular-velocity-rotation (about $\hat{\mathbf{n}}$) is second order, because the rotations about x and y were each by θ. The frame rotation effect is similar: the resulting rotation, about the axis perpendicular to both boosts, has angle $(1 / 2) u v / c^{2}$. Even the factor of $1 / 2$ turns out to be the same!

