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What is the result of combining rotations about different axes?

In a “compound boost” we make a Lorentz transformation from frame 1 to frame 2, with
some relative velocity, and follow that with a Lorentz transformation from frame 2 to frame
3, with some other velocity. You were told in lecture that frames 1 and 3 are not just related
by a single boost — for the sum of the relative velocities — in that there is also a rotation
between frames 1 and 3. This is a strange fact, and this short note is meant to make it less
mysterious by giving you an example of a closely related effect involving just rotations.

In mechanics you learned that angular velocities indeed add as vectors. For example, if
you are on a merry-go-round with angular velocity ω12 relative to the earth, and spin a
bicycle wheel with angular velocity ω23 relative to the merry-go-round, then the angular
velocity of the wheel relative to the earth is ω12+ω23. But angular velocity corresponds to
an infinitesimal rotation, and we should not be surprised to get a different result when we
combine finite rotations.

Here is a simple example showing the failure of “addition of small rotations”. Positive
rotations (right-hand-rule) by angle θ about the x-axis are defined by the matrix

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ≈
 1 0 0

0 1− θ2

2
−θ

0 θ 1− θ2

2

 ,

where the matrix on the right is the approximation that keeps terms up to second order in
the small angle θ. For small rotations about the y-axis the corresponding matrices are

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ≈
 1− θ2

2
0 θ

0 1 0

−θ 0 1− θ2

2

 .

Now, if small rotations added perfectly, then the “compound rotation” Ry(θ)Rx(θ) — first
about x̂ and then about ŷ — would be a rotation about n̂ = (x̂ + ŷ)/

√
2 by amount

√
2 θ.

By rotating n̂ to x̂, with a z-axis rotation by −π/4, performing the rotation Rx(
√
2 θ) and

rotating x̂ back to n̂ with a z rotation by +π/4, we get the matrix for general rotations
about n̂:

Rn(
√
2 θ) = Rz(π/4)Rx(

√
2 θ)Rz(−π/4).

Since

Rz(±π/4) =

 1/
√
2 ∓1/

√
2 0

±1/
√
2 1/

√
2 0

0 0 1

 ,
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this rotation matrix works out to be

Rn(
√
2 θ) =


1
2
cos

(√
2θ
)
+ 1

2
1
2
− 1

2
cos

(√
2θ
)

sin
(√

2θ
)
/
√
2

1
2
− 1

2
cos

(√
2θ
)

1
2
cos

(√
2θ
)
+ 1

2
− sin

(√
2θ
)
/
√
2

− sin
(√

2θ
)
/
√
2 sin

(√
2θ
)
/
√
2 cos

(√
2θ
)



≈

 1− θ2

2
θ2

2
θ

θ2

2
1− θ2

2
−θ

−θ θ 1− θ2

 .

If small rotations combined naively, then the inverse of this applied to the compound rota-
tion Ry(θ)Rx(θ) should give the identity transformation. Instead, for small θ we obtain

Rn(−
√
2 θ)Ry(θ)Rx(θ) ≈

 1 θ2

2
0

− θ2

2
1 0

0 0 1

 .

This is a rotation about the z-axis by angle −θ2/2. When the compound rotation is gener-
ated in the opposite order,

Rn(−
√
2 θ)Rx(θ)Ry(θ) ≈

 1 − θ2

2
0

θ2

2
1 0

0 0 1

 .

the rotation about the z-axis is by angle +θ2/2.

Notice that the correction to the naive addition-of-angular-velocity-rotation (about n̂) is
second order, because the rotations about x and y were each by θ. The frame rotation effect
is similar: the resulting rotation, about the axis perpendicular to both boosts, has angle
(1/2)uv/c2 . Even the factor of 1/2 turns out to be the same!


