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Planck Power

Max Planck’s discovery of the fundamental constant & made it possible to ex-
press all the quantities in mechanics as multiples of fundamental scales. G and
¢ were already known, and since
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have linearly independent exponents for mass (M) length (L) and time (7)),
suitable products of powers of the three fundamental constants will express any
quantity with M, L and T in its units. The corresponding fundamental scale is
identified by the prefix “Planck.” In the case of power, since

é o M (L)T)?
G T
has units of power, the Planck power is defined as

P —5—36x1052w
P = G = o. .
This exceeds even the peak power output of a supernova. There’s nothing
quantum-mechanical about this power—7 is conspicuously absent—and perhaps
an odd way to start a course on that subject!

Even though quantum mechanics plays no role in the origin of the fundamen-
tal scale of power, we can use the quantum formalism to analyze a scenario where
the Planck power is relevant. In the late 1970s a group of undergraduates—who
choose to remain anonymous—asked Richard Feynman whether gravity could
reverse the effects of diffraction. NASA astronauts had placed a corner-reflector-
array on the moon that could be used to precisely measure the variation in the
earth-moon distance. But because of diffraction, the laser beam’s cross section
is enormous and attenuated by the time it arrives on the moon! Could the
gravitational self-attraction of the laser beam’s energy density keep the beam
focused?

Rather than try to reconstruct Feynman’s analysis, we will consider the
simpler scenario of a focused beam. Can self-gravitation reduce the size of the
focus? And if so, how much power is needed for the radiation-collapse to be
turned into a factory for miniature black holes?

We are only interested in working out estimates, such as how things depend
on geometrical characteristics of the focus, and also the power in the beam.
On the next page are plots of the magnitude (left) and phase (left) of the
electromagnetic field in a plane through the focus (when gravity is switched
off). The white line in the magnitude plot, of length 20y, gives the scale of
the “waist” of the beam at the tightest focus. The white circle of radius r
characterizes the curvature of the trajectories of energy-density elements at the
periphery of the beam at the waist. You know from wave mechanics that the
smallest achievable o is of order the wavelength A of the light. And since this
is the only length scale around, it should not surprise you that » ~ A. This will
be one of the outcomes of our analysis later in the chapter. The perpendiculars
to the phase contours give the local propagation direction of the energy density.
Far from the focus the phase contours become curved and the energy-density
trajectories approach straight lines. This will also emerge from our “quantum
analysis” of the wave propagation.

The electromagnetic energy density elements are moving with speed c. When
forced—by Maxwell’s equations!—to move along the circle of radius r at the



waist, they experience an outward acceleration
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We are counting on gravity to oppose this acceleration, to the point where the
net acceleration is inward. We can estimate the required power in the beam P
as follows. Consider a cubic region with sides 20¢ ~ A centered at the focus.
The energy F in this region is equal to the product of P and the time \/c
needed to fill the region with energy density:

P

E~—.
c

Using E = Mc? for the mass equivalent in the region, and

(P))/c?

M
9~0x~¢

for the scale of the gravitational acceleration at distance A from the center of
the mass, the criterion

an~g
2 (P\)/c?
2T

leads us to the conclusion that the required scale of P is the Planck power Pp.



Schrodinger wave model of beam dynamics

To keep our analysis of beam dynamics simple, there is just one transverse
dimension, with coordinate x. The generalization to a second transverse di-
mension is straightforward and doesn’t add much. The propagation axis has
coordinate y. We choose to express E and B in the standard way, in terms of a
complex function W. In particular,

E = Re (\If(x,y)) P

describes a beam where the electric field has a constant linear polarization. We
will use the “paraxial approximation,” where the phase contours are not too
strongly curved, so that the local propagation direction (Poynting vector) is
always close to the y axis. In this approximation the polarization of B is also
nearly constant and we can write

B ~Im (T(z,y)) X.
We have no further need for these definitions other than the fact that

u(@,y) o ¥z, y)f?

is the electromagnetic energy density.
Our beam is monochromatic of wavelength A and automatically satisfies
Maxwell’s equation when constructed as a superposition of plane-wave modes

U (@, y) = e VIR Y, (2)

where kg = 27/ is the wavenumber associated with A. The transverse wave
vectors of our modes have the restriction |k| < kg. The modes at the limits, with
wavelengths close to A, are required to make the most compact transverse wave
packets. You might object that the use of such modes undercuts the paraxial
approximation, and you would be correct! However, let’s not forget we are
ultimately working out an estimate, and the scales we identify in that analysis
are mostly immune to such details.

We can turn beam formation into a dynamical process by interpreting the y
axis as time with the definition y = ct. The plane wave modes thereby acquire
mode frequencies wy defined by

—wit = /kE — K2y
k2
~ ]{10 — % Ct,

where we used the paraxial approximation in the second line. The energy as-
sociated with the mode frequency can be written in the following suggestive
way:
h2
hwy, = —k* — hwo.
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Here wg = kgc is the frequency of the light and

hko
m=—
c

is a parameter having dimension mass. Writing the mode (2) as

\I/k(l‘, t) —_ eikmfiwkt

we see that it satisfies the following partial differential equation

., 0V h? 9%,

Zhw = *%W + ‘/O\I/k
if we define Vj = —hwy. Notice that all the terms are independent of k, so
the same equation applies to arbitrary superpositions of modes (all of frequency
wp). Using ¥ for that arbitrary superposition, we’ve found that the transverse
evolution of the electromagnetic field as a function of y is equivalent to the time
evolution of the wave function ¥ of a quantum particle of mass m in a constant
potential Vj.

You might be disappointed that the Schrodinger equation corresponding to
laser beams is the most boring one imaginable, the free-particle (constant po-
tential) case. That could be because in the past you have mostly been interested
in stationary state wave functions, where the time-dependence is the most bor-
ing imaginable! The free-particle equation is quite interesting when we consider
initial conditions, and that is what’s important in this application of the equa-
tion. Let’s not forget that at some negative y there is a lens that “initializes”
the electromagnetic wave!

Here is the free-particle wave function that has the right initial conditions
for our application:

U(x,t) = L e =@ /b7 (O) Fiwot (3)
The function b
V2 (t) = of + 2i—t
(t) =og + e

provides a time dependence beyond that of stationary states and includes the
wave function’s single free parameter g, a length. In the exercises you confirm
that this does indeed satisfy the free-particle Schrodinger equation and that up
to a time-dependent normalization factor

()2 oc e~ 227/ O,

where

o(t) = /o2 + <m>2 (4)

maog



is the time-dependent Gaussian width of the energy density distribution in x.
Using t = y/c, at large or small y,

o(t) ~ tan® [yl,

2
_ 1
0 = tan (kOUO)

is the angle of the asymptotic linear growth of the width with |y|. This estab-
lishes that our wave function has converging-lens initial conditions, and gives
us another interpretation of the parameter oy. The paraxial approximation is
valid when 6 is small, or when oy is not much smaller than the scale of the
wavelength A (in order that kgog is not too small).

Near the waist (small |¢|) the Gaussian width expression (4) can be approx-
imated as

where

1
o(t) = o9 + iat2

in which the quadratic-in-time growth is parametrized by the “acceleration”

a =

4R?
3

m2o

Recalling the definition of the mass m, and using oy ~ A, we confirm our earlier
guess (1).

Exercises

1. By working out the derivatives by hand, confirm that (3) is a solution to
the free-particle Schrédinger equation.

2. Derive expression (4) for the Gaussian width of the energy density.

3. In making the paraxial approximation, our model for the focusing of light
does not correspond to initial conditions where the incoming and outgoing
phase contours are spherical (circular) far from the focus. Consider the
phase contour that intersects the y-axis at y = R. If the contours are truly
spherical, then

yr(z) = V R? — 22

is the y coordinate of that contour as a function of the distance z away
from the axis. The curvature of the contour, where it intersects the axis,
is then
deR 1
dx? N

i
Calculate this quantity for the phase contours given by the wave function

(3). Only work out the limiting case where R/ko > 03. You will find that
the curvature even has a different dependence on R.
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Ordinary Matter

It’s a remarkable fact that all ordinary matter has a single, universal, smallest
length scale—and it’s not Planck’s! Think of the world of ordinary matter as
an enormous digital image. While the image has features spanning many length
scales, below a certain length scale all you see is pixels. The pixels of ordinary
matter are better known as atoms. Their length scale, named after Niels Bohr,
is derived from two properties of the electron: its mass m and its charge e.

Bohr’s length and energy scale

Because we are going to go crazy writing 4meg every time we need the electric
potential of a point charge, we will briefly use the cgs electron-charge unit e

defined by
e .

4eq

For example, the potential energy of an electron separated from a proton by

distance r is simply
52
é

r
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From the MKS Coulomb’s law number!

you can work out

dyn cm?

é~ (1.6x107" Q) \/9 x 109 x 109 ==

=4.8x1071 {/dyncm? .

The square-root entity is the cgs counterpart of the Coulomb, called esu (for
“electrostatic unit”) and

2

Aesw)” o

1 cm

But as we’ll see, as soon as we introduce Bohr’s scale of length, called the Bohr

radius, and an associated energy scale, called the Hartree, we will never have to

write another e or € !

Today we have a better way of introducing the atomic length scale than
Bohr’s. Because we already know about wavefunctions, operators, expectation
values, and so on, we will freely draw on these mathematical ideas. So let’s
start by considering a point charge—a nucleus of charge Zé—at the origin, and
an electron described by a wavefunction ¥, localized near the origin. The only
thing we care about WV is its length scale, a. We will determine a starting with
the electron’s Hamiltonian in the presence of the nucleus:

p2 VA é2

:2m T

Besides the positive integer Z, the only physical parameters are the mass m and
electron charge é.
Without having to do hardly any thinking, we know that the expectation

value
2

I

(W) = e

varies as the inverse square of the length scale, and ¢; is a positive numerical
constant that depends on details other than the scale. That’s because

(T|p?| W) :/d?’r (4+ih V) - (=i V) :hz/d?’r |V|?

after we do the integration by parts and make note of the fact that the boundary
term is zero because ¥ vanishes far from the origin. With even less thinking we

know that 1 1
U = |U) = —¢y —
(W]~ W) = —c; -

IThroughout these lectures we limit precision in these situations to a level that can be
committed to memory.



where ¢ is another positive constant unrelated to the scale. Combining the two
expectation values we arrive at

h? Z &
<\I/|H‘\I/> =C o9 a2 — Co T (5)

= FE(a) .

Modern-day Bohr would be taking a victory lap upon arriving at the result
(5). It already resolves the awkward problem of the electron spiraling ever closer
to the nucleus, with no bound on how low its energy can get. That corresponds
to the second term of (5), when the scale a gets smaller without bound. But this
is countered by the first term: it grows positively through the increase in kinetic
energy as the wave function shrinks in size. Minimizing F(a) with respect to a,
the optimum scale

_ C1 1 hQ
ey Zmeé2
gives the total energy
h? 1 Z &2
E(a™) = — =
(a) “a <2ma*) a* €2 a*
1 1 Z &2
= C1 *C*2Zé2 — —C2 €
cq a* a*
1 Zzé&?
=——c
272 g

At the optimum scale, the positive kinetic energy is exactly half the magnitude
of the negative potential energy, resulting in a net negative energy. The electron
is bound, because were it to escape from the nucleus it would only have kinetic
energy, which is positive.
The combination of electron parameters
h2
aB = e’ (6)
in the expression for a*, has units of length and defines the Bohr radius. The
term “radius” is historical and something we will return to later. What’s inter-
esting is that all the terms of the Hamiltonian can be expressed in terms of this
one scale. Introducing the symbols p and 7 for the corresponding dimensionless
momentum and distance operators,

p=(h/a)V

r=apr,

the Hamiltonian takes the form
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where
K2 &2
EH = 3 = —
mag 4B

are the two ways of writing the Hartree unit of energy.

Now, if you're doing a calculation on paper, or something more ambitious on
a computer, and it involves atoms or molecules (to which we’ll get later), then
set up your Hamiltonian in dimensionless momenta and positions. Because your
wave functions will be functions of the dimensionless position coordinates, any-
thing that involves distance 1 in those coordinates corresponds to the physical
distance

ap ~ 0.529 A .

And if the energy (expectation value or eigenvalue) of that wave function hap-
pens to be, say —1, the physical energy is

Ey~ —-272¢eV.

As an example, the dimensionless Hamiltonian you would be working with when
studying the helium atom is
1 2 2 1
H= (i4vi- 22y L

1 T2 12
where we have dropped the over-bars and rijo = ||r; — ra|| is the dimensionless
operator for the distance between the electrons.

Shaken, not stirred

Particle physicists will tell you the energy scale associated with the electron is
mc? = 0.511 MeV

which is fine because ordinary matter is not their purview. The ratio with the
Hartree defines the following dimensionless combination of physical constants:

Ey & 1  ,mé& 1 _(52>2

Bl s S _ e
mc?2  ag mc? h2  mc? he

For historical reasons, the square-root
62
a=—
he
is called the fine structure constant. A better name, based on its value

a =~ .007 ,

is the Bond constant. The number « shows up all the time. We follow up with
two instances of « that are important in approximations.
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When an atom or molecule makes a transition between two electronic en-
ergy levels and in the process emits a photon, how does the wavelength, of the
corresponding light, compare with the atomic scale? Starting with ag, through
which we define the scale of electronic energy levels, we define the wavenumber
kg of the associated light like this:

AE:f:th:thB.
aB

The dimensionless product

comes up when calculating the photon emission process. Because « is small,
one can neglect higher order terms in the “multipole expansion” of the phase
factor e™T of the electromagnetic field. Since kg = 27 /A, it means that the
wavelength of light associated with electronic transition is enormous compared
to the size of atoms.

Thanks to the electron’s kinetic energy, the electron never gets too close to
the nucleus (in an average sense). But how sure are we that its speed is well
below ¢, so that special relativity can be neglected? Here’s how that estimate

works out: .
© _)m
c c c
Because a &~ .007 is small, neglecting relativity is a good approximation. On the
other hand, « is not all that small, and the effects of relativity can be confirmed
when calculations are carried out to higher order in this small quantity.



