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Details are provided of the algorithm used for the reconstruction of yeast cell
images in the recent demonstration of diffraction microscopy by Shapiro,
Thibault, Beetz, Elser, Howells, Jacobsen, Kirz, Lima, Miao, Nieman & Sayre
[Proc. Natl Acad. Sci. USA (2005), 102, 15343-15346]. Two refinements of the
iterative constraint-based scheme are developed to address the current
experimental realities of this imaging technique, which include missing central
data and noise. A constrained power operator is defined whose eigenmodes
allow the identification of a small number of degrees of freedom in the
reconstruction that are negligibly constrained as a result of the missing data. To
achieve reproducibility in the algorithm’s output, a special intervention is
required for these modes. Weak incompatibility of the constraints caused by
noise in both direct and Fourier space leads to residual phase fluctuations. This
problem is addressed by supplementing the algorithm with an averaging
method. The effect of averaging may be interpreted in terms of an effective
modulation transfer function, as used in optics, to quantify the resolution. The
reconstruction details are prefaced with simulations of wave propagation
through a model yeast cell. These show that the yeast cell is a strong-phase-
contrast object for the conditions in the experiment.

1. Introduction

The proposal for using oversampled X-ray diffraction patterns
as the basis of a new type of microscopy (Sayre, 1980) was
advanced by many recent experiments. After its first demon-
stration with a manufactured two-dimensional specimen by
Miao et al. (1999), the method was successfully used on other
two-dimensional objects (Marchesini et al., 2003), on three-
dimensional engineered structures (Miao et al, 2002;
Chapman et al., 2006), on stained bacteria (Miao et al., 2003)
and on microcrystals (Williams et al., 2003). A recent advance
was made by Shapiro et al. (2005) by the measurement of a
highly detailed diffraction pattern produced by a single
unstained freeze-dried yeast cell with soft X-rays (750 eV). An
integral part of the proposed ‘diffraction microscope’ is the
reconstruction algorithm that interprets the diffraction
pattern; this action is performed in a conventional microscope
by physical apparatus (lenses efc.). We report here on the
development of this algorithmic component of the instrument
that resulted from efforts directed at present-day two-
dimensional data from a yeast cell.

Reconstruction of the image of an isolated object is made
possible if its diffraction pattern is measured on a fine enough
grid. In direct space, this oversampling results in a field of view
empty but for a small region occupied by the object. If this

region, called the ‘support’, is small enough, the phase
problem has an overwhelmingly high probability of having a
unique solution. For a more rigorous treatment of these
questions, see Miao & Sayre (2000) and Elser & Millane
(2006). All recent work in diffraction microscopy makes use of
iterative reconstruction algorithms. The most popular to date
is Fienup’s (1982) hybrid input-output (HIO) algorithm,
which was initially inspired by Gerchberg & Saxton’s (1972)
algorithm. Since then, many variations have been proposed
(Marchesini et al., 2003; Elser, 2003a; Wu et al., 2004; Russel
Luke, 2005). The algorithm used in this work is the difference
map (Elser, 2003a), a generalization of the hybrid input-
output, which makes it applicable to a wide variety of
problems (Elser, 2003c; Elser & Rankenburg, 2006). An
overview of this algorithm is given in §4.

Before reconstruction is attempted, some important attri-
butes of the object to be reconstructed can be determined
directly from the data or with only a minimum amount of
processing. One of the data sets is reproduced in Fig. 1
(Shapiro et al., 2005). The streaks of intensity at variance with
two-dimensional Friedel symmetry call for an explanation
even before the data are phased and the image reconstructed.
Is the asymmetry with respect to 180° rotation due to the
curvature of the Ewald sphere or evidence of strong contrast?
By simulating the wave propagation through a model cell, we
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show in §2 that, although both mechanisms do in principle
contribute, by far the strongest source of asymmetry is the
large optical thickness of the specimen. From this exercise, we
learn that the contrast mechanism is far from satisfying the
Born approximation and that the data correspond to the
far-field diffraction pattern of a strongly phase shifted exit
wave. This information is important when formulating the
constraints used by the phasing algorithm (§4).

The detail of the diffraction pattern (Fig. 1, inset) shows a
continuous speckle pattern — qualitative evidence that the
oversampling of the diffraction pattern may be sufficient for
phasing. A more quantitative test is provided by the auto-
correlation of the object/exit wave, as obtained by Fourier
transforming the intensity distribution in the diffraction
pattern. Because of the non-Friedel asymmetry, this will be
complex-valued; the real part is shown in Fig. 2. We see
evidence of a rather sharply defined object support. The
outline of the oval shape has perfect symmetry with respect to
180° rotation and corresponds to the autocorrelation of the
object support. The diameter is twice that of the actual yeast
cell. We have direct evidence of the cell from the faint ‘ghosts’
surrounding the symmetric central oval. These are probably
the result of phase interference between the yeast cell and
isolated point-like scatterers located a few cell diameters
distant, thus forming something like a collection of Fourier-
transform holograms (Stroke & Falconer, 1964; McNulty et al.,
1992; Eisebitt er al, 2004). The autocorrelation image thus
provides very detailed information about the support
constraint used by the phasing algorithm (Fienup, 1978).
Estimating the area in pixels of the support, we arrive at an

Figure 1

Soft X-ray (A = 1.65 nm) diffraction pattern of a freeze-dried yeast cell
on a logarithmic scale (Shapiro et al, 2005). This 1200 x 1200 array
extends to (20.7 nm) ™! on the sides, giving the corresponding real-space
array 10.3 nm wide pixels. Inset, left: Magnified portion of the diffraction
pattern showing the speckles. Inset, right: Magnified central region
showing the diamond-shaped missing data region.

oversampling ratio of about 25 (Miao & Sayre, 2000), or about
5 in each dimensions. A quantity more relevant to the diffi-
culty of a reconstruction is the overdetermination ratio (Elser
& Millane, 2006), given by

Q — % Aauto , (1)
Aobject

where A, and A, are the number of pixels in the object’s
and the autocorrelation’s support. This number can be seen as
the ratio of the number of independent constraints to the
number of degrees of freedom: the solution is more over-
determined when 2 is larger. For the yeast cell problem, the
overdetermination ratio is almost exactly 2 because the
support is convex and nearly centrosymmetric. This represents
the most challenging case in terms of computation since 2
cannot be less than 2 in two dimensions. Non-convex supports
[as is seen in Chapman et al. (2006) for instance] have a higher
overdetermination ratio and are known to be easier to solve
(Fienup, 1987).

Data at the center of the diffraction pattern are missing
because of the beamstop; this beamstop is required in present
experiments to avoid saturation and damage of the X-ray
detector by the very strong undiffracted beam and saturation
by the stronger diffraction intensity at low spatial frequency.
In crystallographic phasing, the region interior to the inner-
most Bragg spots is free of data and the central beam can be

Figure 2

Real part of the autocorrelation. This image is the high-pass filtered
inverse Fourier transform of the diffraction pattern shown in Fig. 1 (the
high-pass filter reduces the effect of the sharp discontinuity due to missing
central data). The central oval-shaped structure is the autocorrelation of
the cell. Its contour is used to determine the size of the support and to
calculate the overdetermination ratio. The surrounding shapes are faint
images of the cell caused by the interference with point-like scatterers
around the cell.
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allowed to extend somewhat into that region without data loss.
In the non-crystal diffraction experiment, the situation is
different, and confinement of the beam to a minimal number
of detector pixels becomes important. This is now being
worked on. We meanwhile address the handling of significant
amounts of data loss in §3.

2. Multislice simulations

To arrive at a better understanding of the contrast mechanism
in this experiment, we simulated the propagation of X-rays
through a model freeze-dried yeast cell. Our model cell is a
3 um sphere made of lipids and proteins. All the lipids are
concentrated in the 50 nm thick cell membrane. The protein
material inside the cell is modeled as a binary-valued distri-
bution occupying 25% of the cell volume. The exact spatial
distribution of the protein material is random, but the
envelope of its power spectrum was forced to follow a power
law of the form |F(q)| o< ¢~*. The exponent of this power law
controls the relative contributions of high and low spatial
frequencies. Fig. 3(a) shows the protein material in one slice of
the cell when generated with our choice of exponent, o = 1.6.
For the simulations, the refractive index of the material inside
the cell was sampled on a grid with (25nm)?® voxels.

The refractive indices n =1—3§ —iff of a model lipid
(623% H, 31.4% C and 6.3% O as number fractions) and
protein (48.6% H, 32.9% C, 8.9% N, 8.9% O and 0.6% S) were

Figure 3

Yeast cell model. (a) Slice of the model through the origin. (b) Simulated
wavefield at the focus plane (i.e. exit wave back-propagated to the center
of the cell). The image is indistinguishable from the exit wave (not
shown). (c¢) Spiral distribution of the values in the complex plane at the
focus plane. (d) Value distribution at the exit plane. The structure close to
the origin is caused by free propagation just outside the support region
(see Fig. 4). (a) and (b) represent complex-valued objects. The colors are
defined such that phase is mapped to hue and magnitude is mapped to
brightness.

calculated using the data of Henke et al. (1993). At the 750 eV
X-ray energy of the experiment, these are

J B
lipid 423 x 1074 6.88 x 1073
protein 5.44 x 1074 1.05 x 107*

From this we see that the wave acquires a phase shift of
A = 2mté/A or about 7r/2 as it passes through the center of a
3 um diameter cell with a quarter of its volume filled with
protein so that ¢t = 0.75 pm. The magnitude of this phase shift
already implies that the Born approximation will not be valid
in the interpretation of the diffraction pattern.

We used a propagation formula derived in Appendix A to
calculate exit waves for our model yeast cell. The formulation
is known as the ‘beam propagation method’ (Feit & Fleck,
1978; Van Roey & Lagasse, 1981) and is very similar to the
multislice method (Cowley & Moodie, 1957), the former being
traditionally used in optics and the latter in electron micros-
copy. This method is based on a discretization of the wave
propagation along the direction of the incident wave (set
along the z axis in this work) from one plane to another. The
main result derived in Appendix A is the following formula:

\qu(z + Az) = {\I'q(z) + %[&(Z) * E’(Z)]q}
x explinz[(K* — ¢*)"? — k]}, ()

where CIDq(z) is the two-dimensional Fourier transform of the
wavefield in the transverse plane at position z, k = 27/A, * is
the convolution operation and dn, is the Fourier transform (in
the transverse plane) of &n(r) =1(n* —1) = —8(r) — iB(r).
This formula was preferred to Cowley & Moodie’s (1957)
standard multislice formula [equation (28) in Appendix A]
because it does not rely on the small-scattering-angle
approximation. Equation (2) becomes exact for arbitrarily
large Az when én =0, resulting in the simple free-space
propagation equation:

U, (z + Az) = U (2) explidz[(K — )2 — k). (3)

Fig. 3(b) shows a typical exit wave obtained with (2) and
rendered such that hue and brightness correspond to phase
and magnitude, respectively. The distribution of the exit-wave
values in the complex plane, shown in Fig. 3(d), is itself useful
in that it might be used to constrain the reconstruction of the
object/exit wave. That these values lie on an approximate
spiral is explained by the Eikonal approximation (25) and is
obtained from (2) in the limit ¢ < k. The distribution of exit-
wave values W is simply related to the distribution, transverse
to the beam, of projected protein thicknesses ¢ by

W o exp(iktdn). 4

Broadening of the spiral is due to Ewald sphere lift-off effects,
that is, terms in the propagation equations [equation (22) in
Appendix A] of higher order in the transverse spatial
frequency, q/k.

The spirals in Figs. 3(c) and 3(d) are a clear indication that
the exit-wave amplitude is not proportional to the refractive
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index of the specimen. In this context, the Born approximation
is violated, and three-dimensional reconstructions cannot be
attempted in the usual way suggested by traditional crystal-
lography, that is through the accumulation into a three-
dimensional Fourier data set of two-dimensional measure-
ments on Ewald spheres, as was done by Chapman et al. (2006)
on an engineered specimen. The two-dimensional recon-
struction presented here involves focus effects related to the
curvature of the Ewald sphere. By definition, features in the
exit waves are more in focus if they are close to the exit plane,
while they are slightly dispersed by the wave propagation if
they are farther from that plane. For any two-dimensional
object, the plane for which the wavefield has the smallest
support is the plane in which the object is in focus [see e.g. Fig.
9 of Spence et al. (2002)]. For a spherical cell, this corresponds
to the plane going through its center, corresponding to the exit
wave back-propagated [in vacuum, using equation (3)] by half
the diameter of the cell. We define this plane as the ‘focal
plane’.

Fig. 4(a) illustrates the simulated perturbation of the inci-
dent wave as it propagates through the cell. At the scale of this
image, the lateral dispersion of the wavefield is unnoticeable.
Fig. 4(b) shows the wavefield propagated (in free space) both
forward and backward from the exit plane, with the axis in the
direction of propagation compressed by a factor 5. As
emphasized in Fig. 4(c), there is a noticeable spread of the
field perturbation. This observation is very important for the
understanding of the reconstruction method described in §4.

It is the exit wave back-propagated to the focal plane that
the constraints of the reconstruction algorithm are applied to.
This two-dimensional object is subject both to the support
constraint and, because its forward propagation leads to the
measured diffraction pattern, to the Fourier constraint
(Fienup, 1982; Elser, 2003a). The non-negligible optical depth
of the cell, in combination with the curvature of the Ewald
sphere, will lead to a blurring of the elements out of the focus
plane. How defocus affects the resolution is discussed in more
detail in §4 and in Appendix B.

The missing data at the center of the diffraction pattern,
which account for most of the power in the exit wave, preclude

‘ﬁ

the direct use of value constraints in the reconstruction, and
the spiral distribution in particular. With reduced missing data,
and use of the unconstrained mode analysis described in §3, it
may be possible to exploit value constraints in the future.

3. Unconstrained modes

Any reconstruction effort that uses a support constraint and is
faced with a significant region of missing data at the center of
the diffraction data must contend with the following form of
ambiguity. Consider adding a broad Gaussian feature at the
center of the support. If the tails of the Gaussian are small at
the support boundary, then the added feature is still consistent
with the support constraint. On the other hand, if the Gaussian
is sufficiently broad, its counterpart in Fourier space will be
narrow enough to fit inside the region of missing data and not
upset the constrained diffraction intensities along that region’s
boundary. Clearly there is an optimal Gaussian mode, with
respect to constraints in both direct and Fourier space. The
amplitude of this mode is negligibly constrained by the data
and support, and as such represents a source of ambiguity in
the reconstruction.

There may be other modes, in addition to the Gaussian just
described, that contribute to the ambiguity. In Appendix C, we
develop a formalism for identifying all the ‘unconstrained
modes’ for any particular support/missing-data combination.
This analysis provides a set of eigenmodes of a ‘constrained
power operator’, ranked by their corresponding eigenvalues.
The constrained power of a mode ranges, by definition,
between 0 and 2, where 2 would apply to a mode having most
of its power in the measured diffraction pattern and, in direct
space, outside the object support. We are concerned here with
modes having negligible constrained power. A useful estimate
of the number of such modes is derived in Appendix C and is
given by the formula M = N./o, where N, is the number of
missing Fourier samples at the center of the diffraction pattern
and o is the oversampling ratio (Miao & Sayre, 2000). For the
data shown in Fig. 1, N, = 362; this together with our earlier
estimate o = 25 gives M = 14.5. A heuristic approach consists
in describing the unconstrained degrees of freedom as ‘missing

Figure 4

Wavefield propagation simulations. (a) Longitudinal section through the center of the cell (outlined in white) of the simulated wavefield perturbation.
(b) Longitudinal section of the simulated free-space forward and backward propagation of the wavefield. (c¢) Same as (b) but with the higher-amplitude
values truncated to see the perturbation propagating out of the cell. The coloring scheme is the same as in Fig. 3. In (b) and (c), the propagation axis has

been compressed by a factor of 5.
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speckles’; in the present work, M has essentially the same
significance as the ‘number of speckles’ introduced recently by
Miao et al. (2005).

Fig. 5 shows the results of a detailed unconstrained mode
analysis. The number of modes (four) with constrained power
less than 0.02 gives some sense of the number of uncon-
strained degrees of freedom in the reconstruction. Since all of
these modes lie in Fourier space at the center of the diffraction
pattern, their actual power is large. This makes value
constraints, such as positivity, problematic. In the case of
complex-valued reconstructions with pixel values having
special distributions (for example Fig. 3c), the use of value
constraints can in principle be beneficial. We chose not to use
such constraints for the yeast cell reconstruction.

How does one resolve this M-parameter ambiguity in the
reconstruction? Without the benefit of supplementary data or
additional a priori knowledge, these mode amplitudes are
completely unconstrained. Since the reconstruction algorithm
we use is based on the available constraints, the amplitudes of
the unconstrained modes drift only very slowly with iteration
number and are therefore strongly subject to the random start
that initiates the algorithm. To eliminate these very slow

> -
(@) Mode 1 (0.00024) (b) Mode 2 (0.0033)
-
] . H
-
(¢) Mode 3 (0.0044) (d) Mode 4 (0.0162)

Figure 5

The four most weakly constrained modes (constrained power in
parentheses). Each mode is shown in direct and Fourier space. The
phase of the mode is illustrated by the hue and the amplitude by the
saturation. Both the support (in real space) and region of measured data
(in Fourier space) are superimposed in gray.

(@)

Figure 6

degrees of freedom and to improve the reproducibility of
results, our algorithm orthogonalizes the reconstruction with
respect to a set of unconstrained modes that are computed in
advance. For the yeast reconstruction, we used four modes, the
highest having constrained power 0.0162. In the resulting
reconstructions, the artificial zeroing of these mode ampli-
tudes is very noticeable, owing to the fact that their relative
power should be quite large. To mitigate this largely aesthetic
problem, we use an ad hoc prescription for restoring the mode
amplitudes that still leads to reproducible results. This is
simply to determine the amplitudes by the condition that the
variance of the distribution of complex pixel values within the
support is minimized. If W, is the reconstruction that has been
orthogonalized with respect to the M modes, the complex
amplitude a; of the ith mode ; is given by the minimization of

2
(AW) = . ()

S

M M
v, + Z a;Xi — <\I’0 + Z aiXi>
i=1 i=1

S

where ()¢ is the complex-valued pixel average inside the
support.

We find that reconstructions appear more ‘plausible’ when
unconstrained modes are restored by this procedure than if
their amplitudes are set to zero. Fig. 6 illustrates the effect of
the mode replacement method. Fig. 6(a) is an example of a
reconstruction obtained when the mode amplitudes are
allowed to vary freely. Fig. 6(b) shows the result of zeroing the
mode amplitudes. The final reconstruction, with the modes
restored with the ad hoc rule, is shown in Fig. 6(c).

4. Reconstruction algorithm

There are a number of different algorithms that can be used
for speckle diffraction reconstructions (Fienup, 1982;
Bauschke et al., 2003). Our reconstruction used the difference-
map algorithm (Elser, 2003a,c) with support and Fourier
magnitude as the two constraints. The support projector P
zeros the reconstruction outside the support,

v, ifres,

Py(¥,) = { 0 otherwise, ©)

(©)

Illustration of the effect of the unconstrained modes. (a) Reconstruction with the freely varying mode amplitudes, (b) after the four least-constrained
modes have been projected out, (c) after restoration of the modes using the ad hoc variance minimization rule. Both (b) and (c) are reproducible but ()

has a somewhat distracting and unnatural appearance.
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while P, rescales the corresponding Fourier transform to have
the measured magnitudes F, wherever the latter are known
(and leaves others unchanged):

v -
~ FqN—q if F, is known and |\qu| #0,
Pr(Wy) =1 "9, ™)
7 otherwise.

q

As before, q is the Fourier-space coordinate of the Fourier
transform of W,. In terms of directly measured quantities, |q] is
equal, as usual, to 2 sin 6/, where 6 is the angle at which a
given diffraction intensity is measured.

The difference map is defined by the iteration relation

\IjnJrl = \Ijn + ﬂ(\pFn - \IJSn)’ (8)

where
Wy, = PF((VS +DPs(¥,) — yS\Ijn>’

Vg, = Py ((VF + DPp(¥,) — VF\I’n) ©

are the nth Fourier and support estimates, respectively. A
near-optimal choice for the y parameters (Elser, 2003b) is
¥s = B! and y, = —B~L. With 8 = 1, this algorithm reduces
to Fienup’s hybrid input-output algorithm. For the yeast cell
reconstruction, we used the simple alternative 8 = —1, for
which the estimates become"

"IJFn = PF(Q‘PS(\I/n) - \Iln) and lI',Sn = PS(\IIn) (10)

It is clear in equation (8) that the iteration reaches a fixed
point if the two estimates are equal, in which case the
reconstruction is equal to either of these estimates. The
Fourier and support estimates differ in general and the
difference-map error, used to monitor convergence, is defined
as

€ =1V, =Vl = [IWp, — W, ll- (11)

The reconstruction iterate W, is complex-valued since the
Fourier magnitudes in the data lack Friedel symmetry.

Details about the implementation of the algorithm that are
special to the yeast reconstruction and deserve elaboration are
the treatment of the support constraint and the averaging
procedure used to achieve reproducible results in the presence
of noisy constraints.

The support was initially defined as a rectangle of dimen-
sions half the size of the oval shape observed in the auto-
correlation (Fig. 2). It was then refined with various methods,
going from simple thresholding to pixel-by-pixel editing in a
drawing program. A more systematic approach has been
demonstrated by Marchesini et al. (2003) who use a combi-
nation of low-pass filtering and thresholding to automatically
generate a tightening support at each iteration in a procedure
called ‘shrink wrap’. We did not use this approach in our
present work. Instead, each time a new support was obtained,

I Note that 2P(¥) — W, appearing here with our particular choice of
parameters, is called in other work the ‘reflector’ (Bauschke et al., 2003) or
the ‘charge-flipping’ operation (Wu et al., 2004).

a new reconstruction was attempted (without most of the
refinements described below) for a few hundred iterations
only. The new reconstruction attempt was then used to define
a yet tighter support. At each step, the cell membrane became
more and more sharply defined, which made the definition of
the support outline more and more accurate. Excessively tight
supports were avoided by noticing sharp upturns in the
difference-map error.

A new procedure was found to be necessary for obtaining
reproducible results. The noise in the Fourier data creates
incompatibility in the constraints with the result that the
reconstruction iterate never reaches a fixed point. Instead, the
algorithm enters a steady state, characterized by an error that
fluctuates around a constant, non-zero, value. The relatively
small error in this regime suggests that the region explored by
the algorithm contains the best solution, that is, the image that
would be reconstructed in the absence of noise in the data. In
the absence of convergence, however, the definition of ‘solu-
tion’ becomes ambiguous. We decided to adopt an averaging
method to obtain a unique solution, independent of both the
initial conditions and the number of iterations. The final
reconstruction is defined as the average of many Fourier
estimates in the steady-state regime. We take advantage of the
chaotic dynamics of the algorithm to form averages out of
estimates taken in a single run; we did not notice any benefit
from the averaging of estimates from different runs, although
it has been observed recently by Chapman et al. (2006) that
using different runs could help to identify reconstruction
pathologies (phase vortices). A tight support is needed to
avoid compromising the average by a drift of the reconstruc-
tion within the support. Cross correlation between estimates
could also be used to improve alignment before computing the
average; this procedure was not used in the present case, but
will be used in future work. Appendix B describes the effect of
averaging over many estimates translated with respect to each
other.

Besides reproducibility, another benefit of the averaging
process is a systematic cancellation of the highly fluctuating
(thus not well determined) degrees of freedom. Since the
phase fluctuation is larger in the high spatial frequency region
of the Fourier data, the global effect of averaging is a decrease
in the detail seen in the reconstruction. Apart from achieving
reproducibility, we believe that reconstructions not averaged
over residual fluctuations convey a misleading degree of detail
(resolution). As described in §5, the power reduction at high
spatial frequencies, as a result of averaging, provides a way to
measure the spatial resolution of the final reconstruction.

Averaging a complex-valued reconstruction introduces
additional complications. Both projectors are blind to a
constant phase factor in the reconstruction iterate [that is,
Py(e®W) = ?Py(¥) and Pr(e?¥) = ¢?P.(¥)]. Prior to aver-
aging, we therefore reset the global phase factor such that
the sum of the pixel values in W lies on the real axis. This
rotation in the complex plane has to be done only after the
unconstrained modes are projected out of the image, since
these free amplitudes bias the evaluation of the global phase
factor.

Acta Cryst. (2006). A62, 248-261
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Noise and support size play an even more subtle role in the
particular case of the reconstruction of a complex-valued
image. In fact, it has often been observed (Fienup, 1987,
Spence et al., 2002; Faulkner & Rodenburg, 2004) that very
tight supports are needed for the reconstruction of complex-
valued objects, especially when noise is present in the data.
This can be explained by the defocus ambiguity inherent to
any reconstruction lacking value constraints (such as reality
or positivity). The measurement of the cell’s diffraction
pattern gives the magnitude of the in-plane Fourier transform
of the exit wave, |V . By virtue of equation (3),

0-55 [ T T T 1" T T T T T T ]
L I ]
0.5+ €nf -
L ‘. " . &
€n 0.45F | I S S ;
L 0 50000 100000.
Iteration number |
0.4} TN T |
A II“N II\‘HLH\'J‘U‘“HW | iy MM | H“i “ L1l | “‘i - o
| | |
035 5000 10000
Iteration number
(b)
Figure 7

(a) Yeast cell reconstruction, based on an average of 1000 Fourier
estimates. The weakly constrained modes have been restored using the
variance minimization rule. As in previous figures, the phase is
represented by the hue and the magnitude by the brightness. (b)
Difference-map error (¢,) for the first 10000 iterates (thin line). The bold
line is a running average (over a 1000 iterate window) to emphasize the
decay of the transient. The dotted line is the overall average, € = 0.384.
The sharp decrease of the error, usual indicator of near-convergence,
occurs within the first 50 iterations. Inset: the difference-map error for the
whole run. As explained in the text, the overall scale of the error can be
considered as arbitrary because of the missing central data.

|\qu(z)| = @q(z + Az)| for any Az The Fourier constraint is
therefore insensitive to the focus plane of the reconstruction.
As illustrated in Fig. 4, if Az is small enough (see Appendix B
for a more precise definition of Az), an exit wave propagated
backward or forward using equation (3) still almost satisfies
the support constraint as well. Hence, the reconstruction will
never be uniquely determined since a whole ensemble of
defocus planes will nearly satisfy both constraints. If there was
no noise in the diffraction pattern and no unknown scatterers
outside the support, the reconstruction algorithm should in
principle converge to what we defined earlier as the focal
plane. Therefore, in any realistic situation and in the absence
of value constraints in the support, the reproducibility of the
reconstruction is compromised not only by the non-conver-
gence of the algorithm but also by this defocus ambiguity. This
problem is not present in the case of real-valued exit waves
since the exponential factor in (3) violates Friedel symmetry if
Az # 0. Very similar conclusions about this defocus ambiguity
were recently published by Chapman et al. (2006).

For the defocus issues as well, the averaging method
provides a unique reconstruction, at the cost of a resolution
decrease. It is shown in Appendix B that the averaging
procedure on the defocus ensemble results in an effective low-
pass filter on the reconstruction. This source of resolution loss
should become dominant for loose supports and/or noisy data.

Future applications of the averaging method could depend
less on a tight support if one instead translates the recon-
struction to a unique position using the transformation rules in
Fourier space. In addition to translations r transverse to the
beam, we must also consider ‘defocus’ translations z along the
beam. The corresponding phase shifts in Fourier space are
given by

Py =Gy + b0 +1-q+2[(K — )" — k], (12)

where we have also included the global phase ambiguity, ¢,.
Arbitrary values of the parameters ¢, r and z result in a new
Fourier estimate also consistent with the diffraction data.
Recently, Marchesini et al. (2005) have pointed out that this
phase correction should also include other low-order phase
aberrations (including astigmatism, coma, and even the
possibility of a phase vortex centered at ¢ = 0). The values of
r, z and other low-order coefficients are normally discovered
by the algorithm in the process of satisfying the support
constraint. However, as discussed above, lower-order terms
are more sensitive to the tightness of the support. Alter-
natively, once the reconstruction has entered the averaging
stage, one can relax the support constraint and instead fix
these coefficients. An improved version of the algorithm
implementing such a phase-error correction is currently in
development.

5. Results

The reconstructed yeast cell image is shown in Fig. 7(a). It is
the average of 1000 Fourier estimates, taken every 50 itera-
tions in a single run. We let the averaging begin only after
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50000 iterations to avoid transient effects. Fig. 7(b) shows the
difference-map error of the first 10000 iterations. As suggested
by this plot, 5000 iterations would have been sufficient to
avoid transients. The inset of Fig. 7(b) shows the error
evolution for the full 100000 iteration run.

One important point has to be made regarding normal-
ization: prior to the reconstruction, the diffraction data were
normalized in the standard way, that is by setting the average
intensity per pixel equal to 1. However, the missing central
data seriously underestimate the total intensity. The absolute
scale of the difference-map error thus does not have a
straightforward interpretation. One can compare the mean
value of the error in the steady-state regime € with the Fourier
magnitudes. The resolution shell where the Fourier magni-
tudes are of the order of € is independent of the normalization
and evaluates to 42 nm in the current reconstruction. We
expect this number to be proportional to the resolution of the
reconstruction although, as explained below, we judge that it is
an overestimate in the present case.

Defining the resolution of the reconstruction is at first not
obvious. While resolution is limited by the apparatus in
conventional microscopy and by the quality of the specimen in
X-ray crystallography, both effects seem to be playing a role in
X-ray diffraction microscopy. For a biological specimen, one
has additionally a source of measurement noise associated
with dose limits. The resolution of a particular reconstruction
is therefore a function of the specimen observed. As explained
above, the averaging method seems very well suited to reveal
the effect of noise on the resolution.

Full period (nm)
1000 100 50 20

0.8

0.6

“\.15 nm

02r ] 1
30 nm““,‘.
. 1 2 5 lIO 20 : 50
Spatial frequency (um—1)
Figure 8

Resolution decrease caused by averaging. The black line shows the
relative decrease of the reconstructed intensity as a result of averaging
over residual phase fluctuations. The two dashed lines show the classical
MTF for an incoherent imaging system with 75% efficiency and a
Rayleigh resolution of 15 and 30 nm, respectively. The vertical dotted line
indicates the approximate boundary of the beam stop. [From Shapiro et
al. (2005).]

The dimension of the smallest features in Fig. 7(a) is about
3 pixels, leading to a rough evaluation of the resolution
of 30 nm. Fig. 8 shows a more rigorous way of determining
the resolution. For any q in Fourier space, the ratio of
the reconstructed intensity to the observed intensity,
|W,..(q)1?/|Fps(q)|?, is the result of averaging over residual
phase fluctuations in the steady state of the algorithm. The
solid curve on the graph is the azimuthal average of this ratio.
This curve can be regarded as being analogous to an optical
transfer function for the imaging experiment. Of course, if we
knew the true phase of the diffraction data and averaged the
complex quantity WV,..(q)/F, in different annular resolution
shells, we would have something analogous to a coherent
transfer function for the coherent imaging system. However,
since we have only magnitude data in the Fourier plane, it is
more sensible to compare the reconstruction magnitudes
(following averaging) with the measured magnitudes, in a
manner more closely resembling a modulation transfer func-
tion (MTF). In the diffraction reconstruction, this figure
indicates the fraction of power in the object against power in
the data as a function of spatial frequency, which is quite
analogous to the information presented in a MTF curve. For
comparison, two classical optics MTF curves (dashed lines)
have been added to the graph, showing that the 30 nm reso-
lution estimate is sensible.

We verified that the finest details in the final reconstruction
were reproduced when the algorithm was given different
starting phases. When the algorithm is given the opposite sign
of the difference-map parameter f, the agreement is only

Position (jum)
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Pixel index
(0
Figure 9
Comparison of the reconstructions obtained with (¢) § = —1 and (b)

B = 1. The dotted lines show the position of the cross section plotted
below. (c¢) Cross section of the absolute value of the two reconstructions
for B = —1 (blue) and B =1 (red).
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partial, though unnoticeable to the eye, as illustrated in Figs.
9(a) and 9(b). Fig. 9(c) shows a cross section of the absolute
value of the reconstruction. This figure shows that the high
spatial frequency features are very well reproduced and that
the disagreement lies mostly in low spatial frequencies. That
the reconstructions are not identical for different sets of
parameters is to be expected since the averaging process
depends on the ensemble of estimates sampled, which
depends on the dynamics of the algorithm. Hence, the high
similarity between the two reconstructions in Fig. 9 increases
our confidence in our results. Contamination by the recon-
struction twin (enantiomorph) could be a source of concern,
especially, as in our case, when the support only weakly favors
one twin over the other. Certainly, to get optimal results, the
averaging of reconstructions should commence only after
obvious signs of transients, such as seen in the difference-map
error, have passed.

As suggested by the autocorrelation (Fig. 2), weak scat-
terers were present around the yeast cell during the
measurement of the diffraction pattern. Fig. 10 shows the
result of our attempt to reconstruct the ‘dust’ surrounding the
cell. This reconstruction was realized by a simple relaxation of
the support constraint: the modified support projector sets to
zero only those pixels outside the support with amplitude
below a predetermined threshold c:

v, ifreSor |¥|>c (13)

Py (W :{
s.(%r) 0 otherwise.

In the present work, we found that setting this threshold to
about six times the amplitude of the error was appropriate. Of
course, too low a value for the threshold weakens the
constraint and slows down the dynamics of the algorithm. This

Figure 10

Reconstruction magnitudes of the small scatterers surrounding the cell,
saturated to allow weaker points to be seen. This image is the average of
400 Fourier estimates. We have checked that this result is independent of
the starting iterate.

modified projector can be unstable if most of the power is not
already inside the support. The reconstruction shown in Fig. 10
was made by starting with the final iterate of a previous run
with the regular support projection. A total of 20000 iterations
was needed to generate this average of 400 estimates. In future
experiments, a small quantity of strong scatterers could be
placed around the main specimen (see for instance Eisebitt et
al., 2004). The resulting increase in the overdetermination
ratio should help the reconstruction algorithm and also
resolve the defocus ambiguity if the specimen is expected to
be complex valued. In the present work, these scatterers were
too weak to be useful (less than 0.02% of the total power
comes from the reconstructed dust).

6. Conclusions

The reconstruction of a real-space image from the X-ray
diffraction pattern of a single unstained cell has stimulated
several developments in reconstruction algorithms. Special
attention was devoted to the reproducibility of the recon-
struction. The missing data in the center of the diffraction
pattern give rise to very weakly constrained degrees of
freedom (modes) that we identified as the eigenvectors of a
constrained power operator. Very weakly constrained modes
were projected out of the reconstruction and replaced using a
well defined ad hoc rule. The lack of convergence was
addressed by adopting an averaging method. The final
reconstruction therefore does not depend on the starting
phases or the number of iterations. The averaging results in an
improvement of image reliability along with an effective
decrease of the resolution. This can be traced to noise in the
data and, in the special case of a complex-valued object
without value constraint, the ambiguity in the defocus-plane
position.

A number of issues still stand in the way of the application
of diffraction microscopy to the three-dimensional imaging of
optically thick biological specimens. While missing central
data poses a problem even for reconstructions of optically thin
specimens (valid Born approximation), the problem is more
acute when value constraints (positivity etc.) cannot be applied
directly to the reconstructed object (exit wave). Present
experiments are working at minimizing the region of missing
data, and it may soon be possible to obtain two-dimensional
data that can be reconstructed without the benefit of value
constraints. Merging a series of two-dimensional reconstruc-
tions tomographically, to yield a three-dimensional map of the
specimen’s refractive index, poses another challenge. For thick
specimens, this is probably feasible only at shorter wave-
lengths or when the relationship between the three-dimen-
sional refractive-index contrast and the exit wave is simple
(Rytov, 1937). An attractive possibility is to carry out the full
set of two-dimensional reconstructions collectively, rather
than individually. We are optimistic that some version of these
strategies will succeed in the three-dimensional problem, since
animated sequences of two-dimensional reconstructions of the
yeast cell over a few degrees of tilt (Shapiro et al., 2005)
already convey a fair degree of three-dimensional structure.
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APPENDIX A
Multislice propagation formula

We derive the propagation formula used in §2 to propagate an
incident plane wave through an object with refractive-index
distribution n(r). The formalism and final formula are similar
in essence to the multislice (Cowley & Moodie, 1957) and the
beam propagation methods (Feit & Fleck, 1978; Van Roey &
Lagasse, 1981). The radiation field ® is treated in the scalar
wave approximation:

VA 4 kK*n*® = 0. (14)

Here k is the wavenumber of the incident and elastically
scattered waves. We let ®(z) denote the Fourier transform of
@ in the dimensions transverse to the incident radiation
direction, given by z. Introducing the refractive contrast
26n = n? — 1, equation (14) becomes

8P, (2) + (K — ¢)®,(2) +2K[5n x B(2)], =0, (15)

where * denotes convolution in the transverse Fourier space.
The modes q are sampled on a periodic grid for efficient
computation of the convolution by two-dimensional FFTs. In
free space (6n = 0), the most general solution of (15) has the
form

®,(2) = A, expliz(k> — ¢*)'*] + B, exp[—iz(k* — ¢*)'/*].
(16)

An incident wave corresponds to A, = (q) (the Dirac delta
function) and B, = 0.

The scattering is calculated in the modulation approxima-
tion

®,(2) = A, (2) expliz(k* — ¢*)'"*], 17)

where A,(z) = 8(q) for z < z,, and is slowly varying for z > z,.
This precludes calculation of the back-scattered waves [second
term in equation (16)] or waves with large q. Mathematically,
the approximation corresponds to the neglect of the third term
in

8D,(2) = [~k — ¢H)A(2) + 2i(K> — ¢*)'*0,A(2)
+ £A ()] expliz(k* — ¢*)'/]. (18)

Substituting just the first two terms into equation (15), we
obtain

9,A4(2) expliz(k® — ¢°)'"*]
2
~ "(kz_kw {8n x A() expliz(k* — ¢*)'"’},  (19)
a set of first-order differential equations, one for each q,
coupled by the convolution term. The first-order structure of
the equations enables the multislice approach, where the
incident wave is propagated unidirectionally through the
refractive medium. The exit wave will have z-independent
modulation amplitudes A, (z) and (17) ensures that the scat-
tered waves have the correct wavenumber k.
To cast (19) into a form more amenable to computations, we
define

\qu(z) = 5q(z) exp(—ikz), (20)
and substitute
U, (2)exp{—iz[(K — ¢ — K]} = A(2)  (21)

into (19). The result is

2

9040 = A0 =)'~ K@+

[5~n * \’Ivl(z)]q.
(22)

In the limit g < k, we recover from (22) the Eikonal
approximation since

0. W,(2) = ik[bn * V(2)], (23)
implies
9. 9(2) = iksnW(z) (24)
with solution
W(z) = W(z,) exp (ik j dn dz). (25)

Our numerical formula is given by the finite difference
integration of (22):

T+ 00 = By(0) ik a0 = /0 = 10

1

+ W [(§71 * @(z)]q } . (26)

This is equivalent, to first order in Az, to the form that was
implemented in our computations, equation (2), restated here
for completeness:

ik A ~ o~
o o,

x expliAz[(k* — ¢*)'* — k]}.

@q(z + Az) = {\Ilq(z) +

When én = 0, this equation becomes of the same form as
equation (17), making it valid for arbitrary large Az. The
exponential factor to the right is the free-space propagator.
The simulations in this work involve a specimen for which the
condition k > |Vén| is always satisfied, so that the Rytov
approximation (Rytov, 1937; Davis, 1994) of equation (14)
should be valid. We have verified that this is indeed the case.

A1. Implementation details

Practical implementations make use of the fast Fourier
transform (denoted as F here) to compute the convolution
appearing in (2), so that this equation can be written as the
iteration of

. 1,3
AV; = ikAzdn; x F{¥;},

~ 1
LIji+1 = I:\I’r + (1 — g2/k2)\/?

x expliAz[(K* — ¢*)'* — K]},

x f{A\IJj}} 27)
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with én; = dn(r, z;). This particular formulation emphasizes
the similarity with the standard multislice (Cowley & Moodie,
1957; Ishizuka & Uyeda, 1977) and beam propagation (Feit &
Fleck, 1978; Van Roey & Lagasse, 1981; Thylén, 1983)
formulae, which do not conserve the wavenumber of the
scattered radiation:

VUi = explikAzédn] x f_l{a-},

- (28)
Wi = Fl¥explidz[(k® — ¢*)'? — k]}.

In this small-angle, or paraxial, approximation, the square root
in the second term’s denominator of equation (2) is set to 1.
Often, the propagator term is approximated by its first non-
zero order in g, becoming the Fresnel propagator.

APPENDIX B
The effect of averaging on the reconstruction
resolution

We consider here the effect of the three translational
symmetries of the specimen on the averaging method. The first
calculation shows that the average over an ensemble of
translated estimates in a plane perpendicular to the propa-
gation direction can be modeled as a Gaussian low-pass
filtering operation. The second calculation shows how the
resolution can be further affected by an averaging over many
defocus planes. This defocus occurs only as a combined effect
of the noise and complex-valuedness of the reconstruction.

B1. Averaging over translation in the transverse plane

We assume for simplicity that the distance between the
support and the boundary of the object is the same along its
contour. Let r, be this distance, expressing the tightness of the
support. The averaging is made over the family of estimates
having Fourier components that differ by a phase tilt
exp(ir - q), with |r] <r,. Then, assuming that the distribution of
r is a Gaussian of standard deviation r,, we find that

U, (exp(ir - q))
= U, exp(—172q?). (29)

This results in an effective Gaussian transfer function.

\Il exp(ir - q)) =

B2. Averaging over defocus planes

We model one slice of the specimen being reconstructed as
a uniform disc of radius R. The goal of the first part of this
calculation is to find the approximate amplitude of the scat-
tered field at distance z downstream from the disc and a
distance r from the axis passing through its center. The Fourier
transform of the wavefield at the plane z is given by

U,(2) = — )" — K]}, (30)

where \Flvlq(O) is the Fourier transform of the exit wave at z = 0.
Since the specimen is assumed to be a uniform disc,
Y, if r| <R

0 otherwise.

W, (0) expliz[(k*

w@z:mz{ (31)

Then \AI:'q(O) is just an Airy disc:

]1(qR)
gR

U, (0) = W,R? - (32)

The inverse Fourier transform of (30) can be written as

W(r, z) = ! /\I/ (z) exp(ir - q) d’q

N_/[ 11( 61)

= \IIOkR/ Jo(krx)J,(kRx) exp(— } ikzx?) dx. (33)
0

exp(— 1zizqz/k)] exp(ir - q) d’q

Using the method of stationary phase, we find that, when
R> (r—R)and z > (r — R),

Z

W(r, 2) ~ Wy ——
D~ ¥ Ry

(34)

which is also, as it turns out, the asymptotic behavior of the
Fresnel integral for a semi-infinite plane (that is, Fresnel
diffraction of a plane wave by a straight edge).

As explained in §4, in the presence of noise in the Fourier
data, the reconstruction algorithm enters in a steady-state
regime. In the absence of convergence, the reconstruction is
defined as an average over the Fourier estimates [equation
(10)]. Because of noise, the region outside the support in these
estimates is never zero but fluctuates with a r.m.s. value ¢
which scales like the difference-map error. ¢ can then be seen
as the tolerance of the algorithm to fluctuations outside the
support. The goal of this Appendix is to point out that this
finite tolerance allows in turn a range of defocus values, as
long as & > |W/W,|, that is:

Z

e> |/ ~ —m,
| / 0| k(RS—R)2

(35)

where we have set r = Ry, the radius of the circular support
used in a reconstruction. It is then reasonable to assume that
the extent of the defocus region |z| <z, tolerated by the
algorithm is given by z, ~ ¢k(Rg — R)".

The last step in this calculation consists in computing the
effect of averaging on the ensemble of defocus planes. Taking
Z, as the standard deviation of the distribution of planes, we
have

(U, exp(—Lizg?/k)) = W, (exp(— Lizq?/k))
= \T/q exp[— % (Zoqz/k)z]
T, expl—as’(R; — R)'q"]. (36)

The averaging over defocus planes results in a low-pass filter
dependent on both the noise (through ¢) and the tightness of
the support, |[Rg — R|. It is argued at the end of §5 that an
effective alternative consists in translating the defocus planes,
thereby avoiding the construction of a highly detailed support.
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APPENDIX C
Unconstrained mode analysis

In direct space, there is no constraint on the value of pixels
(voxels) r € S, where S is the support. Similarly, there is no
Fourier space constraint at frequencies q that lie within the
region of missing data C, usually at the center of the diffrac-
tion pattern. This motivates the following definition for the
constrained power in the reconstructed image \W:

(BIWIW) = [ dr| WP+ [ dq|B(@P, (37
r¢S q¢C
where
\I’(q) = (2m) P [ drexp(—iq - r)¥(r) (38)

is the Fourier transformed image. W is a bounded self-adjoint
operator on the space of square-integrable functions. Its
spectrum, bounded by 0 and 2, enables us to identify modes
that are negligibly constrained in both direct and Fourier
spaces. The eigensystem to be solved can be written as an
integral equation:

AW, (1) = W, (r)

= X)W, (r) + [dr Ko(xr — )W, (r),  (39)
where X (r) is 1 inside S and 0 elsewhere and
K(r) = 2m) P2 [ dq exp(iq - r). (40)
qeC

This formulation emphasizes the similarity with the impor-
tant question of how much information can be transmitted in a
band-limited optical system (see for instance Gabor, 1975). In
this case, one seeks modes that satisfy (Slepian & Pollack,
1961)

LY@ = [ df Kc(r—r)V,(r). 41)

re§

As will be shown below, the eigenvalues of W have a behavior
very similar to those of the system (41). The current problem is
however mathematically different, since a support is known in
both direct and Fourier spaces, so that the modes cannot be
strictly band-limited. To our knowledge, these modes cannot
be expressed in terms of the solutions of (41), the generalized
prolate spheroidal wavefunctions.

When the regions S and C are sufficiently large, the relevant
features of the spectrum yield to a semi-classical wavepacket
analysis. Consider wavepacket modes inside the region S in
direct space. The density of these modes in Fourier
(momentum) space is given by the well known expression
(Rayleigh, 1900; Ashcroft & Mermin, 1976)

V(S)
(2m)P

where V(S) is the area/volume of the region S. To count the
modes that also have negligible power in the region C of
Fourier space, we integrate (42) over C:

Y / a VOT(C)

dM =

dq, (42)

(43)

When M > 1, the condition for semiclassical analysis to be
valid, there will be approximately M negligibly constrained
modes with W 0. We adopt the simpler terminology
‘unconstrained’ for these modes from now on.

The structure of the spectrum of W, for modes with higher
constrained power, is also simple. There is an infinite near-
degeneracy of modes with W & 1, and relatively few modes
with 0 < W < 1. This too can be understood in semiclassical
terms. Consider wavepackets of very small width in the region
S. For suitably small widths, the number of independent
wavepacket modes within S can be made arbitrarily large. On
the other hand, all of these modes will have Fourier transforms
with widths so broad that close to the maximum penalty,
W = 1, is incurred by the second term in (37).

The number of unconstrained modes can be estimated from
the number of missing Fourier data samples N, in the region
C, and the oversampling ratio, defined as

LD

6] e

where L is the linear size of the direct-space field of view.
Since the density of Fourier samples for this field of view is
(L/27)P, we have

~ L\"
N.=V(IOl—] - 45
g w
Combining (43), (44) and (45), we obtain
N,
M=-c. (46)
o

As in Weyl’s formula, for the density of modes of the La-
placian on a bounded region, there are corrections associated
with the boundary that diminish the density of modes. We
therefore expect (46) to be an overestimate when the regions
S and C have large surface-to-volume ratios.
To complete the correspondence between constraints in
direct and Fourier space, we can define a missing data ratio
D
o= NA— (47)
V(C)

where A is the range of spatial frequencies in the diffraction
pattern. The number of pixels (voxels) in the support S is given
by

ve=vis)(3) (48)
and
m="s, (49)
o

Writing M = V(C)V(S)(27)~" makes it apparent that the
number of modes is essentially what is called the ‘Shannon
number’ or the number of degrees of freedom (Gori &
Guattari, 1973; Gabor, 1975) of a coherent optical system in
the classical optics eigenproblem (41).

e
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C1. Numerical methods for unconstrained mode computa-
tions

The two ratios associated with constraints in direct and
Fourier space typically satisfy the relationship 1 € 0 K 6.
From (46) and (49), we then have M < N, < N, and neither
the pixels in the support nor the missing samples in the
diffraction pattern are well matched in number to serve as
efficient bases for the unconstrained modes. Moreover, since
the matrix elements of the operator W are not sparse in either
of these bases, their computation would be costly.

A better basis, and one that exploits the symmetry between
direct and Fourier space, is provided by the quantum harmonic
oscillator modes. These modes have the property of having
some number of oscillations within a classically limited area,
yet they rapidly taper off outside the classical limit and thus
can make a nice transition between missing and measured data
regions. We illustrate this in one dimension, for support and
missing data regions given by

S = {x:|x| <ab), C={k:|k|<a/b}. (50)

In two dimensions and three dimensions, we would construct a
product basis from one-dimensional bases specified by widths
along the Cartesian axes. The properly scaled harmonic
oscillator modes in direct space are

2

¥, (x) = <b> H,(x/b) exp[—(x/b)*/2], (51)
where H, is the nth Hermite polynomial. For computing the
constraint penalty in Fourier space, we use the Fourier
transform

U, (k) = i"b"H, (kb) exp[—(kb) /2]. (52)

Since at the boundaries of S and C we have

Y, (ab) ~ ¥, (a/b) ~ H, (@) exp(—a’/2), (53)

the constraint penalty is equally divided between direct and
Fourier space.

To determine the unconstrained modes, the constrained
power operator W is evaluated in the basis above and diag-
onalized. Since one is only interested in the M least-
constrained modes, the basis can be truncated at a small
multiple of M. In typical applications, N, < Ny, and it makes
sense to evaluate the unconstrained modes on the smaller

OGP IX;) x
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Figure 11

Left: Spectrum of the constrained power operator W in one dimension for
support |x| <5 and missing frequencies |k| <5. Right: Comparison of
modes x;, and x;; shows the onset of constraint as power invades the
region x > 5.

number of Fourier samples within and surrounding the region
C. The corresponding modes in direct space may then be
computed efficiently using the FFT.

C2. Example of a mode calculation

For the one-dimensional regions (50), we use the mode
expansion

N—-1

W(x) = ZO ¥, (x), (54)
where W, (x) is given by (51) and the mode number cut-off N is
chosen to be a few times the number of unconstrained modes
M. Using (43), we obtain M = (2/m)a? in our one-dimensional
example. The truncated mode expansion of the constrained
power operator takes the form

N-1 N

(WIWIW) 2 30 3 WG (55)

m=0 n=0

where

v :{&WMKW£RWP%® it m = n (mod) 4
mn 0

otherwise.
(56)

By diagonalizing the matrix w,,,, we obtain constrained power
eigenvalues w, and corresponding mode amplitudes c,, for the
W eigenmodes x, (p =1,..., N):

W, Chnp = Z:%) W Cops (57)
mng%mm. (58)

Fig. 11 shows the results of a computation for & = 5, for which
M ~15.9.

C3. Numerical implementation

Application of the mode analysis on experimental data
requires that both § and C are well known. These sets are
represented as masks in logical arrays (that is, characteristic
functions sampled on a grid):

1 ifresS

B ifqecC
Xs(r) = { 0 otherwise,

1
X :|
(@ 0  otherwise.

For simplicity, we assume that the arrays are two-dimensional
N x N arrays. The main steps are:

1. Evaluation of the number of missing modes. The upper
bound to the number of unconstrained modes can be written
as

NsNc¢
— N2 5
where Ng = ), X(r), No = Zq Xc(q).
2. Recentering. If needed, recentering of the sets simply

requires a translation of the indices to bring to 0 the position
of the ‘center of mass’, given by

M (59)
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_ 1
r= ﬁs Z rX(r), (60)

with the obvious counterpart in Fourier space.

3. Quantum harmonic oscillator modes. As explained above,
the eigenstates of a quantum harmonic oscillator form a well
matched basis for the expansion of the modes of the power
operator. The properly normalized two-dimensional version
of (51) above is

Vi = mHn(x/UX)Hm(Y/%) exp[—3t(x*/o; +y*/0})]
xPy
(61)
and, in Fourier space,
~ ) {OxC 1/2
Y =1 (22) T H,(0,00H,,(4,0,)
x exp [~ 3(qi0; + q;0))]- (62)
o, and o, can be defined as
Ax\ 72 A\ 2
() o) @
X y
where

1

(Ax)* = VSZxZXS(o
1

(Ay)y = N, Zyzxs(r)

and the analogous definition for (Ag,)* and (Ag,)*.

4. Computation of the unconstrained modes. The expansion
of the unconstrained modes in the basis (61) should in general
include all ¥, ; ,, for all possible k and all / up to a cutoff [,
The matrix elements of the constrained power operator are
given by

W= 2 XV + X XU, (64)
r q

where ; = ¢, ,, is a single-index relabeling of the expanding
functions. Diagonalization of w yields the sought modes
[equation (58) above].
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