Physics 3318: Analytical Mechanics

Spring 2017

Lecture 2: January 30

Instructor: Veit Elser

 \bigcirc Veit Elser

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 Additivity of angular velocity

As you learned in freshman physics, when the river has velocity \mathbf{v}_1 , and the kid swimming has velocity \mathbf{v}_2 relative to the river, then the kid's velocity relative to the shore is $\mathbf{v}_1 + \mathbf{v}_2$. This is a simple consequence of the additivity of translations. If the position of a floating ball relative to the shore is \mathbf{r}_1 , and the position of the kid relative to the ball is \mathbf{r}_2 , then the position of the kid relative to the shore is $\mathbf{r}_1 + \mathbf{r}_2$. Take the time derivative of this and you get the addition of relative velocity rule.

Rotations are not that simple: they are not combined by addition. As a physical scenario, suppose there is a pendulum mounted on a merry-go-round. During time Δt the pendulum (as body) has rotated about a horizontal axis relative to the merry-go-round (as "space") by U_1 . But the merry-go-round has been rotating during this time, so we have to take the result of the first rotation and apply another rotation U_2 , now relative to the fixed earth (true space). The net transformation of coordinates is therefore given by the (non-additive) product of rotations

$$U_{21} = U_2 U_1. (2.1)$$

Fortunately, additivity still applies to angular velocity vectors. To see this, have the body and space frames coincide at time t = 0. We can do this because the body frame basis vectors are arbitrary, as long as we fix them once we've made our choice. As we learned in lecture 1, $\dot{U}_1 = A_1 U_1$, and therefore

$$U_1(\Delta t) \approx U_1(0) + \Delta t A_1(0) U_1(0)$$
(2.2)

is valid when Δt is small. Since the two frames coincide at t = 0, $U_1(0) = 1$ and we have

$$U_1(\Delta t) \approx \mathbb{1} + \Delta t A_1(0). \tag{2.3}$$

Here $A_1(0)$ is the antisymmetric matrix parametrized by the angular velocity vector $\boldsymbol{\omega}_1$ of the pendulum relative to the merry-go-round at time t = 0. By exactly the same argument

$$U_2(\Delta t) \approx \mathbb{1} + \Delta t A_2(0), \tag{2.4}$$

but where now $A_2(0)$ corresponds to the angular velocity vector ω_2 of the merry-go-round relative to the earth. Taking the product

$$U_{21}(\Delta t) = U_2(\Delta t)U_1(\Delta t) \approx 1 + \Delta t \left(A_2(0) + A_1(0)\right) + O(\Delta t^2),$$
(2.5)

and comparing with the equation $\dot{U}_{21} = A_{21}U_{21}$, we see that

$$A_{21}(0) = A_2(0) + A_1(0). (2.6)$$

Additivity of the antisymmetric matrix A — the time-rate-of-change of U — implies additivity of the associated angular velocity vectors:

$$\boldsymbol{\omega}_{21} = \boldsymbol{\omega}_2 + \boldsymbol{\omega}_1. \tag{2.7}$$

Think of this as a statement about three frames, just like the kid swimming in the river. When frames 0 and 1 are related by angular velocity ω_1 , and frames 1 and 2 by angular velocity ω_2 , the upshot is that frames 0 and 2 are then related by their sum.

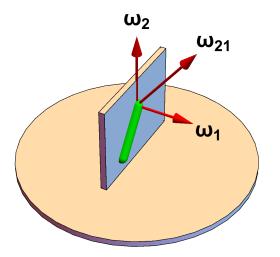


Figure 2.1: Sum of angular velocities applied to a pendulum (green) fixed to a rotating merry-go-round. The pendulum is constrained to swing in a vertical plane (shown) that is fixed to the merry-go-round. At this instant of time the angular velocity of the pendulum, relative to the plane, is ω_1 . The plane has angular velocity ω_2 relative to the earth because it is fixed to the merry-go-round. The net angular velocity of the pendulum relative to the earth, at this instant of time, is $\omega_{21} = \omega_2 + \omega_1$.

2.2 Fictitious forces

The body frame basis vectors are special cases of vectors fixed to the body whose time derivatives we worked out in lecture 1:

$$\dot{\hat{\mathbf{x}}}' = \boldsymbol{\omega} \times \dot{\mathbf{x}}' \qquad \dot{\hat{\mathbf{y}}}' = \boldsymbol{\omega} \times \dot{\mathbf{y}}' \qquad \dot{\hat{\mathbf{z}}}' = \boldsymbol{\omega} \times \dot{\mathbf{z}}'.$$
(2.8)

Now consider an arbitrary vector

$$\mathbf{a} = a'_x \hat{\mathbf{x}}' + a'_y \hat{\mathbf{y}}' + a'_z \hat{\mathbf{z}}',\tag{2.9}$$

where we allow the body frame components $a'_x(t)$, etc. to change with time. For example, if $\mathbf{a} = \mathbf{r}$ were a position it could be moving relative to the body. Let's compute the time derivative of this vector:

$$\dot{\mathbf{a}} = \dot{a}'_x \hat{\mathbf{x}}' + \dot{a}'_y \hat{\mathbf{y}}' + \dot{a}'_z \hat{\mathbf{z}}' + a'_x \hat{\mathbf{x}}' + a'_y \hat{\mathbf{y}}' + a'_z \hat{\mathbf{z}}'$$

$$= \overset{\mathbf{a}}{\mathbf{a}} + \boldsymbol{\omega} \times (a'_x \hat{\mathbf{x}}' + a'_y \hat{\mathbf{y}}' + a'_z \hat{\mathbf{z}}')$$

$$= \overset{\mathbf{a}}{\mathbf{a}} + \boldsymbol{\omega} \times \mathbf{a}.$$
(2.10)

We'll use an open circle above vectors to denote a frame-based time derivative¹:

 $\mathbf{a} =$ time derivative of \mathbf{a} "as seen in the body frame".

Equation (2.10) applies to any vector whose components we choose to express in terms of the rotating basis vectors $\hat{\mathbf{x}}'$, $\hat{\mathbf{y}}'$ and $\hat{\mathbf{z}}'$. For example, when applied to $\mathbf{a} = \boldsymbol{\omega}$ we get

$$\dot{\boldsymbol{\omega}} = \dot{\boldsymbol{\omega}}.\tag{2.11}$$

The case we will be most interested in is where our general vector \mathbf{a} is the velocity vector

$$\mathbf{a} = \dot{\mathbf{r}} \tag{2.12}$$

$$= \mathbf{\dot{r}} + \boldsymbol{\omega} \times \mathbf{r}. \tag{2.13}$$

Applying equation (2.10) to this vector we get

$$\dot{\mathbf{a}} = (\mathring{\mathbf{r}} + \boldsymbol{\omega} \times \mathring{\mathbf{r}}) + \mathring{\boldsymbol{\omega}} \times \mathbf{r} + \boldsymbol{\omega} \times (\mathring{\mathbf{r}} + \boldsymbol{\omega} \times \mathbf{r})$$
(2.14)

$$\ddot{\mathbf{r}} = \ddot{\mathbf{r}} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) + 2\boldsymbol{\omega} \times \dot{\mathbf{r}} + \dot{\boldsymbol{\omega}} \times \mathbf{r}.$$
(2.15)

The point of the kinematical relationship above is to relate the true acceleration of a particle, $\ddot{\mathbf{r}}$, to the apparent acceleration "as seen in the body frame", $\ddot{\mathbf{r}}$. Say the particle has mass m. The true force acting on the particle is

$$\mathbf{F}_{\text{true}} = m\ddot{\mathbf{r}},\tag{2.16}$$

while the force that "explains" the acceleration seen in the body frame is

$$\mathbf{F}_{\text{body}} = m \mathbf{\ddot{r}}.$$
(2.17)

Now if we insist on making sense of motion in the body frame — knowing full well that it is not an inertial frame — we can do so by introducing fictitious forces to make up the difference:

$$\mathbf{F}_{\text{body}} = \mathbf{F}_{\text{true}} + \mathbf{F}_{\text{fict}},\tag{2.18}$$

$$\mathbf{F}_{\text{fict}}/m = -\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) - 2\boldsymbol{\omega} \times \mathring{\mathbf{r}} - \dot{\boldsymbol{\omega}} \times \mathbf{r}.$$
(2.19)

The first two terms in the fictitious force have special names. The centrifugal force

$$\mathbf{F}_{\text{cent}}/m = -\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) \tag{2.20}$$

scales as ω^2 and depends on the position of the particle relative to the origin (axis of rotation). The Coriolis force

$$\mathbf{F}_{\rm cor}/m = -2\boldsymbol{\omega} \times \mathring{\mathbf{r}} \tag{2.21}$$

¹Veit Elser retains full intellectual property rights to this ground breaking notation.

scales as ω^1 and applies only when the particle has a nonzero velocity ($\mathbf{\dot{r}} \neq 0$) in the body frame. The third term in the fictitious force is zero or very small in many situations, such as Earth-bound observations, where the angular velocity vector is constant or nearly so.

Question: Explain the relationship, shared by all three fictitious forces, between the power of ω and the number of time derivatives.

Question: Consider the most commonly encountered situation, where $\boldsymbol{\omega}$ is constant and nonzero. One of the fictitious forces violates time-reversal symmetry — which one?