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Counting self-avoiding paths in the plane with dual variables

This statistical mechanics model grew out of discussions with Persi Diaconis on a method
devised by Donald Knuth1 for counting self-avoiding paths in the plane. Knuth’s method
should not be used for this problem, and self-avoiding paths mostly serve to illustrate how
seemingly reasonable methods can fail spectacularly. Nevertheless, the article is entertain-
ing and instructive, even 40 years after publication.

Knuth was interested in reliably estimating the number of self-avoiding paths within anm×
n rectangle that step along the edges of the integer lattice and have endpoints at diagonally
opposite corners. His (doomed) method, sequential importance sampling, is closer to a
strategy a statistician would propose than something inspired by statistical mechanics.

An example of a statistical-mechanics inspired method is to define a Hamiltonian propor-
tional to the excess path length relative to monotonic paths, of which there are

(
m+n
m

)
. At

zero temperature we only have monotonic paths (whose number we know), while at infinite
temperature we have all self-avoiding paths (whose number we don’t know). The statistical
mechanics trick, called the “integration method”, relates the two numbers by integrating the
derivative of the entropy (the heat capacity) between the two limiting temperatures. While
this method would work, it has a scaling problem that the far superior (and less obvious)
method described below does not.

The main idea is to use variables that are “dual” to the sites visited by the path. These live
on the elementary squares of the lattice (their centers). An edge that joins adjacent sites
of the path intersects a dual edge that joins adjacent squares. This kind of duality does not
generalize to self-avoiding paths in higher dimensions.

The expressive power of the dual variables is explained in Figure 1 (see caption). The
rectangle of the walk is surrounded by a frame of squares on all sides, so there is a binary
dual variable for every square within an (m+ 2)× (n+ 2) rectangle. The variables in the
frame are static and fix the boundary conditions of the path. Only the variables inside the
original m× n rectangle take different values and these span all 2mn possibilities.

Figure 1 illustrates the case where the frame variables are set for paths that run between
diagonal corners. To get paths without endpoints one would instead set all the frame vari-
ables to the same value. We get self-avoiding paths when the number of edge-connected
sets of like-valued dual variables is the smallest possible: 2.

1D. Knuth, Mathematics and Computer Science: Coping with Finiteness, Science 194, 1235-1242 (1976).
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Figure 1: Top: Binary dual variables for the case m = n = 5; variables in the surrounding
frame are set for generating paths having endpoints at the upper left and lower right corners.
Bottom: Edge-connected sets of squares that have the same binary value in the top panel
are colored with distinct colors. Left/Right: The left and right panels are related by flipping
the value of the central dual variable. The excess number of connected components goes
from x(c) = 4 (left) to x(c′) = 2 (right).

Let x(c) be the excess number of connected components in dual-variable configuration c.
Define a partition function that penalizes this quantity:

Z(β) =
∑
c

e−βx(c). (1)

Since Z(0) = 2mn, and Z(∞) is the number of self-avoiding paths, we can relate the
logarithms of these, the entropy, by the integral of an expectation value:

s = logZ(∞) = mn log 2−
∫ ∞
0

e(β)dβ, (2)

where
e(β) = − d

dβ
logZ = E(x(c)). (3)

From this we see the main advantage of the dual variable method: the entropy of the ref-
erence state, now at β = 0, has the same scaling behavior with area as the self-avoiding
paths.
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Figure 2: Typical configuration of dual variables for paths in the 10 × 10 square when
β = 0.

Figures 2-4 show typical configurations for the casem = n = 10 as β is increased from 0 to
1 and then to 6. The average number of excess connected components decays exponentially
with β and is quite small already for β > 6 as shown in Figure 5. The area under this curve,
when subtracted from 10× 10 log 2, gives the entropy for paths in the 10× 10 square.

Figure 3: Same as Figure 2 but for β = 1. In this configuration x(c) = 3.
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Figure 4: Same as Figure 2 but for β = 6. This configuration has x(c) = 0 and corresponds
to a self-avoiding path.

Figure 5: Average of the number of excess connected components, Eq. (3), for paths in the
10× 10 square.


