
Extended summary of the renormalization group
calculation of percolation exponents

Resizing and rescaling after tracing-out modes in the momentum shell

After tracing-out modes in the momentum shell the field has the Fourier repre-
sentation

Ψ<
i (x) =

<∑
p∈Λ∗

eip·x Ψ̂i(p),

where the < over the summation means up to modes with the smaller cutoff,
K/b. Next, rewrite the sum as a sum over modes in the expanded dual lattice,
with cutoff K:

Ψ<
i (x) =

∑
p′∈bΛ∗

ei(p
′/b)·x Ψ̂i(p

′/b).

To restore the sum to a sum over the original dual lattice (now with cutoff K)
we do two things. (1) Introduce “interpolating” Fourier coefficients at modes
p ∈ Λ∗

Ψ̂′
i(p)

with matching values where the dual lattices coincide:

p ∈ bΛ∗ : Ψ̂′
i(p) = Ψ̂i(p/b).

(2) We must also compensate the higher density of modes (in the sum over Λ∗)
with the factor b−D. The result is

Ψ<
i (x) =

1

bD

∑
p∈Λ∗

ei(p/b)·x Ψ̂′
i(p)

=
1

bD
Ψ′

i(x/b).

Finally, we introduce a rescaling factor χ that will be used to restore the coef-
ficient c = 1 for the gradient term:

Ψ<
i (x) =

χ

bD
Ψ′

i(x/b). (1)

When the fields Ψ′
i appear integrated in the Hamiltonian we make the change

of variables x′ = x/b and use

dDx = bD dDx′

The same change of variables applied to the squared gradient gives

∇ · ∇ =
1

b2
∇′ · ∇′.
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Resizing and rescaling applied to the Potts model

After tracing out modes in the momentum shell, the Potts model Hamiltonian
has the form

H< =

∫
dDx

(
c<

2
∇Ψ<

i · ∇Ψ<
i +

r<

2
Ψ<

i Ψ
<
i − w< Qijk Ψ

<
i Ψ

<
j Ψ

<
k − h e1iΨ

<
i

)
.

The magnetic field parameter h is unchanged (h< = h) by tracing-out because
it couples only to the zero momentum mode of the field.

Defining H ′ by the resizing and rescaling transformations applied to H<, we
obtain the following transformation rules for the parameters

r′ = χ2 r<

b(2−1)D

w′ = χ3 w<

b(3−1)D

h′ = χ1h ,

where χ is determined by the condition c′ = 1:

χ =

√
bD+2

c<
.

Parameter transformations for an infinitesimal scale change

Renormalization group flow is parameterized by the logarithmic scale factor
λ = log b. The infinitesimal change in scale δλ generated by tracing out modes
in the momentum shell of thickness

δK = K −K/b = K δλ

changes the parameter as follows:

c< = 1 +

(
δc

δλ

)
δλ

r< = r(λ) +

(
δr

δλ

)
δλ

w< = w(λ) +

(
δw

δλ

)
δλ

h< = h(λ).

After resizing and rescaling, the resulting parameters define

r(λ+ δλ) = r′

w(λ+ δλ) = w′

h(λ+ δλ) = h′ .
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Expanding r′, w′ and h′ to linear order in δλ one obtains the flow equations

ṙ = 2r − r

(
δc

δλ

)
+

(
δr

δλ

)
(2)

ẇ = (3−D/2)w − 3

2
w

(
δc

δλ

)
+

(
δw

δλ

)
(3)

ḣ =
1

2

(
D + 2−

(
δc

δλ

))
h , (4)

where ṙ = dr/dλ, etc.
For some things one needs the flow of the fields as well. Using (1) with

b = 1+ δλ and replacing the superscripts < and ′ with λ and λ+ δλ we obtain

Ψλ+δλ
i (x/b) =

(
1 +

δλ

2

(
D − 2 +

(
δc

δλ

)))
Ψλ

i (x). (5)

Results of the cubic-term perturbation calculation

The tracing over modes in the momentum shell, performed via diagramatic
perturbation theory applied to the cubic term of the Potts Hamiltonian, results
in the following three inputs to the flow equations:

δc

δλ
=

36

D
(q − 2)w2ΩD

KD+2

(K2 + r)4

δr

δλ
= −18(q − 2)w2ΩD

KD

(K2 + r)2

δw

δλ
= 36(q − 3)w3ΩD

KD

(K2 + r)3
.

Rationalized parameters, percolation limit, and D = 6− ϵ

In analyzing the flow equations (2,3,4) we start with the case where at the
original scale, and therefore also at all larger scales, h = 0. This will be revisited
later, when we analyze the free energy. To tidy up the equations for the flow
in the (r, w) plane, we absorb some constant factors by defining “rationalized”
parameters:

r̃ = r/K2

w̃2 = ΩDKD−6w2.

Along with these definitions, we make the following simplifications that apply
specifically to the percolation limit of the Potts model:

1. Set q = 1 and D = 6−ϵ. The deviation ϵ from the upper critical dimension
is treated as a small parameter and we discard higher order terms.

2. The factors (K2 + r)−n are expanded for r ≪ K2, since we are only
interested in the flow in the vicinity of the fixed point where r = O(ϵ).
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Here are the resulting flow equations (accents on the rationalized parameters
have been dropped):

ṙ = 2r + 18w2 − 30rw2 +O(r2w2, w4)

ẇ =
ϵ

2
w − 63w3 +O(rw3, w5) .

The omitted terms are higher order in r/K2, or terms that arise from higher
order perturbation diagrams (four or more vertices).

Fixed points and the critical state

For ϵ < 0 the flow equations have only (r∗, w∗) = (0, 0) as a fixed point, called
the Gaussian fixed point. There is an additional fixed point when ϵ > 0, the
Wilson-Fisher fixed point, located at

r∗ = − ϵ

14

w∗ =

√
ϵ

126
,

to leading order in small ϵ.
In either case, when the model parameters are set at (r∗, w∗), the system is

scale invariant because it is unchanged by the renormalization group transfor-
mation. This critical state is characterized by the exponent

η =
δc

δλ

∣∣∣∣
∗

(6)

= − 6w2
∣∣
∗

where the second line is expressed in terms of rationalized parameters as before.
The Gaussian critical state has η = 0, while the Wilson-Fisher critical state has

η = − ϵ

21
+O(ϵ2) .

Composing the infinitesimal field rescalings in (5), when δc/δλ takes the
constant fixed point value, results in

Ψλ+λ0
i (x/b) = exp

(
λ

2
(D − 2 + η)

)
Ψλ0

i (x)

= b(D−2+η)/2 Ψλ0
i (x) . (7)

We can use this to find field correlations in the critical state. For example,
consider

C∗
ij(x) = ⟨Ψ0

i (0) Ψ
0
j (x)⟩ ,
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the two-point correlation function of the original system (λ = 0) with critical
parameters. Using (7) rewrite this in terms of the fields of the critical model at
scale b = eλ, and define x0 = x/b:

C∗
ij(x) = b−D+2−η ⟨Ψλ

i (0) Ψ
λ
j (x/b)⟩

=

(
∥x0∥
∥x∥

)D−2+η

⟨Ψλ
i (0) Ψ

λ
j (x0)⟩.

We fix x0 at some small distance, say one lattice spacing, so that the expectation
value can be treated as a constant. The large ∥x∥ behavior of the correlation
function at criticality,

C∗
ij(x) ∝

1

∥x∥D−2+η
,

establishes the RG exponent η as the correction relative to the pure squared-
gradient model. Applied to percolation, below six dimensions, we see that the
epsilon correction produces a slower (η < 0) decay of correlations in the critical
cluster.

Flow near the fixed point and the approach to criticality

The flow equations, when linearized about the Wilson-Fisher fixed point, are
represented by the following matrix, up to terms of order ϵ: ∂ṙ

∂r

∣∣
∗

∂ṙ
∂w

∣∣
∗

∂ẇ
∂r

∣∣
∗

∂ẇ
∂w

∣∣
∗

 =

 2− 5
21ϵ 36

√
ϵ

126

0 −ϵ


The positive eigenvalue, quantifying the flow toward large r, of either sign,
defines the reciprocal of the correlation length exponent:

ν =

(
2− 5

21
ϵ

)−1

=
1

2
+

5

84
ϵ+O(ϵ2) .

Defining δr′ as the coordinate along the unstable axis (with origin at the fixed
point), we obtain

δr′(λ0 + λ) = δr′(λ0) exp (λ/ν) . (8)

Even though the flow eventually leaves the region where the linearization is a
good approximation, if δr′(λ0) is tuned very close to zero, then most of the
incremental rescaling (on the logarithmic λ scale) occurs in the fixed point
neighborhood where linearization holds.

Controlling criticality and the divergence of lengths

At the scale of the original Potts model, the w parameter is not small and
the system is far from the Wilson-Fisher fixed point where w∗ = O(

√
ϵ). On

the other hand, a fixed (and modest) level of rescaling will flow the original
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parameters (r0 + δr, w0) into a small enough neighborhood of the fixed point
such that the linearized flow equations are a good approximation. The value
δr = 0 identifies the separatrix in the flow. For δr > 0 the flow is toward large
positive r, or a large scale model where Ψ has a vanishing mean value, while
the large scale model favors a non-vanishing Ψ when δr < 0. Under RG flow by
some fixed scale b0 the value of δr maps to the coordinate δr′ along the unstable
direction of the fixed point. Linearizing this regular map, so δr′ = Aδr, and
using (8) we obtain the equation

δr′(λ) = b1/νAδr, (9)

after additional scaling by the factor b = eλ. However closely we tune the
transition with δr, this equation tells us what amount of rescaling b is required
to flow δr′ some fixed distance d = |δr′(λ)| from the fixed point. Keeping in
mind that δr can have either sign, we obtain

b = B|δr|−ν , (10)

where B combines the constants A and d. Models that flow to δr′(λ) = ±d
are essentially unique (for either sign) because the w parameter is attracted
to the stable axis of the fixed point. These models therefore have identical
characteristics (again, for either sign). If the feature is a length, such as the
decay length of the (non-critical) correlation function, we must remember that
this length should be multiplied by the rescaling factor b if it is to describe the
same feature in the original model. Equation (10) therefore gives the power law
for the divergence of lengths in the model.

Free energy and the percolation exponents

Our handle on the percolation exponents is through the dependence of the free
energy on the parameters δr and h. The signs of these control the transition in
the mean value of the field Ψ. We therefore write

F = F0 + F1(δr, h),

where the nonsingular contribution F0 may be taken as a constant in the domain
of interest where both δr and h are small. Keeping with the spirit of RG, we
don’t calculate F1 but relate it to the F1 of a model at the larger scale b = eλ.
We already learned that (9) should be used for the δr parameter that applies
at scale b. Using (4) and the definition (6) of η, the corresponding rescaling of
h is

h(λ) = b(D+2−η)/2h(0)

The relation between the F1’s at the two scales is therefore

F1(δr, h) =
1

bD
F1(b

1/ν δr, b(D+2−η)/2 h) ,

where the factor bD corrects for the volume increase of the model at scale b.
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To obtain the magnetization and susceptibility we take respectively one and
two derivatives with respect to h, set h = 0, and as in the discussion of diverging
lengths, select b such that

b1/ν δr = ±δr0

for some fixed δr0 > 0. The result of those calculations is

m =

(
|δr|
δr0

)ν(D−2+η)/2

∂hF1(±δr0, 0)

χ =

(
δr0
|δr|

)ν(2−η)

∂2
hF1(±δr0, 0) ,

and identifies the following combination of RG exponents as the critical expo-
nents of percolation:

β = ν (D − 2 + η)/2,

γ = ν (2− η).

Finally, substituting D = 6− ϵ and the result of the small epsilon calculation of
ν and η,

β = 1− ϵ

7
+O(ϵ2),

γ = 1 +
ϵ

7
+O(ϵ2).
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