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Extended summary of the renormalization group calculation
of percolation exponents

Parameter transformations for an infinitesimal scale change

The four parameters in the Potts Hamiltonian are the coefficient of the squared-gradient
term c, the control parameter r that multiples the quadratic term, the coefficient w of the
cubic term, and the parameter h that selects the Potts state. Upon changing the logarithmic
scale of the system from λ to λ + δλ, these parameters are changed by a combination of
three mechanisms:

1. Tracing out field modes in the highest momentum shell.

2. Simple scale factors that arise from (i) restoring the original density of modes in the
momentum basis (the transformed system then being slightly larger than the original
one) and (ii) the transformation of gradients.

3. Field rescaling to restore the value c = 1.

Here are the combined effects of these changes:

r(λ+ δλ) = χ2 r<

b(2−1)D

w(λ+ δλ) = χ3 w<

b(3−1)D

h(λ+ δλ) = χ1h<,

where
χ =

√
bD+2/c<.

The parameters with superscript < are the coefficients just after tracing out modes in the
momentum shell:

c< = 1 +

(
δc

δλ

)
δλ

r< = r(λ) +

(
δr

δλ

)
δλ
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w< = w(λ) +

(
δw

δλ

)
δλ

h< = h(λ).

The parameter h is unchanged by the momentum-shell trace because it only couples to
the zero-momentum component of the fields. Using these in the expressions for the trans-
formed parameters and b = 1 + δλ, we obtain the flow equations below:

ṙ = 2r − r
(
δc

δλ

)
+

(
δr

δλ

)
(1)

ẇ = (3−D/2)w − 3

2
w

(
δc

δλ

)
+

(
δw

δλ

)
(2)

ḣ =
1

2

(
D + 2−

(
δc

δλ

))
h. (3)

We will also need to know the net effect of rescaling on the fields. After an infinitesimal
scale change the fields of the rescaled model have this relation to the original fields:

Ψ′i(x/b) =
bD

χ
Ψ<
i (x)

=

(
1 +

1

2

(
D − 2 +

(
δc

δλ

)))
Ψ<
i (x). (4)

Results of the cubic-term perturbation calculation

The trace over modes in the high momentum shell is performed via diagramatic perturba-
tion theory applied to the cubic term of the Potts Hamiltonian. Below are the results of
those calculations:

δc

δλ
= 18(q − 2)w2ΩD

(
KD

(K2 + r)3
− 4

D

KD+2

(K2 + r)4

)
δr

δλ
= −18(q − 2)w2ΩD

KD

(K2 + r)2

δw

δλ
= 36(q − 3)w3ΩD

KD

(K2 + r)3
.
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Rationalized parameters, percolation limit, and D = 6− ε

In analyzing the flow equations (1,2,3) we start with the case where at the original scale,
and therefore also at all larger scales, h = 0. This will be revisited later, when we analyze
the free energy. To tidy up the equations for the flow in the (r, w) plane, we absorb some
constant factors by defining “rationalized” parameters:

r̃ = r/K2

w̃2 = ΩDK
D−6w2.

Along with these definitions, we make the following simplifications that apply specifically
to the percolation limit of the Potts model:

1. Set q = 1 and D = 6−ε. The deviation ε from the upper critical dimension is treated
as a small parameter and we discard higher order terms.

2. The factors (K2 + r)−n are expanded for r � K2, since we are only interested in the
flow in the vicinity of the fixed point where r = O(ε).

Here are the resulting flow equations (accents on the rationalized parameters have been
dropped):

ṙ = 2r + 18w2 − 30rw2 + · · ·
ẇ =

ε

2
w − 63w3 + · · ·

Here · · · represents terms that are higher order in ε either explicitly or implicitly because
they involve higher powers in r and w than the terms retained (since r = O(ε) and w =
O(
√
ε) near the fixed point).

Fixed point properties

The Wilson-Fisher fixed point (ε > 0), by the flow equations above, is located at

r∗ = − ε

14

w∗ =

√
ε

126
.
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Linearizing the flow equations about the fixed point and defining δr′ as the coordinate along
the unstable axis (with origin at the fixed point), we obtain

δr′(λ0 + λ) = δr′(λ0) exp (λ/ν), (5)

where the fundamental renormalization group exponent ν, characterizing the approach to
criticality, has the value

ν =
1

2
+

5

84
ε+O(ε2).

The second fundamental RG exponent, characterizing the critical state itself, is defined by
the fixed point value of

η =
δc

δλ

∣∣∣∣∣
∗

= − 6w2
∣∣∣
∗

= − ε

21
+O(ε2),

where the second line is expressed in terms of rationalized parameters as before. Substitut-
ing this definition in the flow equation (3) for h, we obtain the scaling of h when the system
is tuned to the critical state (δr′ = 0) and flows indefinitely to the fixed point:

h(λ0 + λ) = h(λ0) exp
(

1

2
(D + 2− η)λ

)
. (6)

Using (4), a similar rule applies to the multiplier of the fields (superscripts give the scale of
the model on which the fields are defined):

Ψλ0+λ
i (x/b) = Ψλ0

i (x) exp
(

1

2
(D − 2 + η)λ

)
. (7)

Exponent of the correlation function at criticality

Let
G∗ij(x) = 〈Ψ0

i (0)Ψ0
j(x)〉

be the two-point correlation function of the original system (λ = 0) when r is tuned to
the critical point (under RG the parameters flow indefinitely to the fixed point). Using (7),
rewrite this in terms of the model and fields at scale b = eλ, and define x0 = x/b:

G∗ij(x) = b−D+2−η 〈Ψλ
i (0)Ψλ

j (x/b)〉

=

(
|x0|
|x|

)D−2+η
〈Ψλ

i (0)Ψλ
j (x0)〉.
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We fix x0 at some small distance, say one lattice spacing, so that the expectation value
will also be a fixed constant. The result gives the power law of the correlation function at
criticality,

G∗ij(x) ∝ 1

|x|D−2+η
,

and establishes the RG exponent η as the correction relative to the pure squared-gradient
model. The small epsilon calculation (η < 0) shows that the correction produces a slower
decay of correlations in percolation.

Controlling criticality and divergence of lengths

At the scale of the original Potts model, the w parameter is not small and the system is
far from the Wilson-Fisher fixed point where w∗ = O(

√
ε). On the other hand, a fixed

(and modest) level of rescaling will flow the original parameters (r0 + δr, w0) into a small
enough neighborhood of the fixed point such that the linearized flow equations are a good
approximation. The value δr = 0 identifies the separatrix in the flow. For δr > 0 the
flow is toward large positive r, or a large scale model where Ψ has a vanishing mean value,
while the large scale model favors a non-vanishing Ψ when δr < 0. Under RG flow by
some fixed scale b0 the value of δr maps to the coordinate δr′ along the unstable direction
of the fixed point. Linearizing this regular map, so δr′ = Aδr, and combining with (5) we
obtain the equation

δr′ = b1/νAδr, (8)

after additional scaling by factor b beyond the rescaling b0 needed to arrive at the fixed point
neighborhood. The point of this equation is that it tells us, for however closely we tune
the transition with δr, how large a rescaling b is required to flow δr′ some fixed distance
δr′0 > 0 from the fixed point. Keeping in mind that δr′ can have either sign, we obtain

b = B|δr|−ν , (9)

where B combines the constants A and δr0. Models that flow to ±δr′0 are (up to sign)
essentially unique because the w parameter is attracted to the stable axis of the fixed point.
These models therefore have identical characteristics (again up to sign). If the feature
is a length, such as the decay length of the (non-critical) correlation function, we must
remember that this length should be multiplied by the rescaling factor b if it is to describe
the same feature in the original model. Equation (9) therefore gives the power law for the
divergence of lengths in the model.
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Free energy and percolation exponents

The free energy of the Potts model has a singular contribution that depends on the variables
δr and h because the signs of these control the transition in the mean value of the field Ψ.
We therefore write

F = F0 + F1(δr, h),

where F0 may be taken as a constant in the domain of interest where both δr and h are
small. Using (8) and (6) we can rewrite the singular contribution in terms of the model at
scale b:

F1(δr, h) =
1

bD
F1(b

1/ν δr, b(D+2−η)/2h)

The factor bD corrects for the volume increase of the model at scale b. To obtain the
magnetization and susceptibility we take respectively one and two derivatives with respect
to h, set h = 0, and as in the discussion of diverging lengths, select b such that

b1/ν δr = ±δr0

for some fixed δr0 > 0. The result of those calculations is

m =

(
|δr|
δr0

)ν(D−2+η)/2
∂hF1(±δr0, 0)

χ =

(
δr0
|δr|

)ν(2−η)
∂2hF1(±δr0, 0),

and identifies the following combination of RG exponents as the critical exponents of per-
colation:

β = ν(D − 2 + η)/2,

γ = ν(2− η).

Finally, substituting D = 6− ε and the result of the small epsilon calculation of ν and η,

β = 1− ε

7
+O(ε2),

γ = 1 +
ε

7
+O(ε2).


