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Due date: Tuesday, December 10

This is the final assignment! You are able to, and should waste no time getting
started on, the Hadamard model simulations because they might take some time
to get right. For the other problems you are filling in details of the Potts model
renormalization group calculation, most of which will be done in class. The first
of these you are ready to do now but for the others you will have to wait until we
arrive at the corresponding point of the calculation.

1. One of the most remarkable features of statistical mechanics is that energy
measurements may be used to obtain purely entropic information. The fun-
damental relationship that enables this is the heat capacity integral:

s(β2)− s(β1) = −
∫ β2

β1
c(β)

dβ

β
.

By measuring energy fluctuations (c) over a range of temperatures, one can
infer the entropy difference of the system at the endpoints of that range. In
this problem you apply this principle to the Hadamard model to approxi-
mately count the number of 8× 8 Hadamard matrices.

In the Hadamard model, s(0) is the logarithm of the volume of the space
SO(n), the n × n orthogonal matrices of determinant 1, divided by n2.
Writing a general element U ∈ SO(n) as

U = eX ,

where X is a real anti-symmetric matrix, the volume element near the iden-
tity element is conventionally defined as1

dµ =
∏

1≤i<j≤n

√
2 dXij.

With this convention2,

vol(SO(n)) = 2(n−1)(n/4+1)
n∏
k=2

πk/2

Γ(k/2)
.

1Consider the length of the line element in SO(n) when only X12 is varied, but having the
effect of changing both U12 and U21. Recall that the scale of the volume element in classical
statistical mechanics is arbitrary and has no effect on entropy differences.

2Thanks to Junkai Dong for tracking this down in the literature!
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Setting n = 8, taking the logarithm, and dividing by n2, we obtain

s(0) = 0.48029817045547823

Now consider the opposite limit, β → ∞. The matrix U will then be near
one of the Hadamard-matrix minima of the Hamiltonian H . Let U∗ be one
such minimum — a Hadamard matrix divided by

√
n. Parameterize the

matrices in the neighborhood as we did above:

U(X) = U∗eX .

Show that for small X

H(U(X)) = −n2 +
n

2
Tr(XXT ) + · · · ,

which is remarkable in being independent of U∗. [Hint: The action of the
absolute value in the Hamiltonian, in the neighborhood of the energy mini-
mum, is the same as component-wise multiplication by U∗.]

Using the same measure dµ we used to define s(0), show that for β →∞

Z(β) ∼ #(n)

(
2π

βn

)n(n−1)/4
,

where #(n) is the number of Hadamard matrices of order n (we assume
#(n) > 0). Finally, using the general relation

S(β) = logZ(β) + β〈H〉,

and remembering to divide by n2, show that the Hadamard model has the
following “specific” entropy in the limit of low temperature:

s(β) ∼
(

1− 1/n

4

)
log

(
2πe

βn

)
+

1

n2
log(#(n)).

For the grand conclusion of this problem, modify your simulation code
so that it performs the heat capacity integral from β = 0 to some low
temperature, say β = 10, and compare the measured entropy difference
to the analytic results above. For n = 8 you will not need too many
sweeps for convergence, but you should vary the integration step ∆β to
check convergence of the numerical integral. How closely can you recover
#(8) = 24772608003?

3Caution: this is not an exponent but a footnote! The number is from OEIS A206711, after
being careful to divide by 2 since we only want Hadamard matrices with determinant +1.



Physics 7653, Fall 2019 3

2. The adjacent lattice site term of −βH , for the Potts model Hamiltonian,
may be written abstractly as V TKV , where V is a vector of (q−1)|V| com-
ponents (corresponding to the q − 1 vector components of the v(r)’s at all
lattice sites r ∈ V in the system). The Hubbard-Stratonovich transformation
converts the trace over the discrete variables V into a trace over continuous
fields Ψ in one-to-one correspondence with the components of V . An “inte-
gral” part of the transformation is the evaluation of the associated coupling
of the fields, ΨTK−1Ψ. Show that in the limit of slowly varying fields, so
that the sum over sites may be approximated by an integral, one obtains

ΨTK−1Ψ ≈ (βεD)−1
∫
dDr

q−1∑
i=1

(
Ψ2
i +

1

2D
|∇Ψi|2

)
.

[Hint: The eigenvectors of the matrix K are plane waves in r with constant
polarization in the (q−1)-space of the Potts model vectors v. The action of
K−1 on these eigenvectors is just to multiply the eigenvector by the inverse
of the eigenvalue. Express the most general Ψ in terms of these eigenvectors
and thereby obtain a formula for ΨTK−1Ψ.]

3. By closely mirroring the in-lecture calculation of 〈H′ 2〉conn, that gave us
δc/δλ and δr/δλ, calculate 〈H′ 3〉conn and show that

δw

δλ
= 36(q − 3)w3 ΩDK

D

(K2 + r)3
.

The following are some checks on parts of the calculation:

(a) There are only two Feynman diagrams to be considered. Draw both of
them, not because they will help you do the calculation, but because it
will impress your friends!
One of the diagrams can be neglected because there is no way for
the three internal momentum variables (associated with the traced-out
fields) to all be in the momentum shell while having the external mo-
menta (associated with the un-traced fields) be small.
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(b) The single Feynman diagram that contributes will have in it the factor

I(p, p′) =
∫ > dDk

(2π)D

∫ > dDk′

(2π)D

∫ > dDk′′

(2π)D
(2π)DδD(p− k′′ + k)(2π)DδD(p′ − k + k′)

(k2 + r)(k′2 + r)(k′′2 + r)
,

where p, p′ and −p − p′ are the three small external momenta. Since
we are only interested in the renormalization of the low momentum
limit of the cubic term, you only need to evaluate I(0, 0).

(c) The q-ology for the relevant Feynman diagram involves the sum (over
repeated indices)

Siln = QijkQklmQmjn.

When you evaluate this sum you will find that, not surprisingly, it is
proportional to the only permutation-invariant 3-index tensor at hand,
Qiln.

4. In terms of the rescaled parameters

r̃ = r/K2 w̃ = w
√

ΩDKD−6

the flow equations for q = 1 (percolation) take the form

˙̃r = 2r̃ + 18w̃2 − 30r̃w̃2

˙̃w =
ε

2
w̃ − 63w̃3.

(a) Find the fixed points of this system to lowest order in ε, both for D > 6
(ε < 0) and D < 6 (ε > 0). Do you find that the effects of fluctuations
raise or lower the ordering temperature of the q → 1 Potts model?

(b) Determine to lowest order in ε the eigenvectors and eigenvalues of the
flow equations linearized about the fixed points.


