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Assignment 3 Solutions

1. Customize your Hadamard-model simulator — or one of the contributed
simulators from the course Github site — to address a number of outstand-
ing features of the model. At a minimum you want to be able to specify, for
one run: n, the range and increment for β, and the number of sweeps in the
average at each β. The output should list the energy e and heat capacity c at
each β, along with estimates of the errors. Here are the simulations for this
assignment:

• For n = 12 make plots of e(β) and c(β) for β between 0 and 10, with
sufficiently small increments to resolve the abrupt drop in energy and
see the heat capacity peak as a hill rather than a single point. Check
that e(β) and c(β) agree with the high temperature limit from the pre-
vious assignment and the equipartition forms e(β) ∼ −1 + 1/(4β),
c(β) ∼ 1/4 at large β (where the Hamiltonian can be approximated as
a quadratic potential for n2/2 degrees of freedom).

• Locate the transition β∗ for n = 8,12,16, 20 (n = 24 is probably out
of reach, but you are welcome to try) by the maximum of c(β). An
outstanding question is whether the apparent increase of β∗(n) with
n (for those n that have Hadamard ground states) is just a “finite size
effect”, and β∗(n) approaches a finite limit, or whether β∗(n) ∝ nψ

for some positive exponent ψ. Which hypothesis is best supported by
your four data points?

• How do the entropy changes β∗∆e(β∗) at the transitions depend on n?
For this it will probably be easier to look at plots of β(e(β) + 1) near
the transition, rather than the c(β) plots you used to locate β∗.

• What can you say about the model at the oddly-even sizes n = 10, 14, 18, 22,
which do not have Hadamard ground states?

Solution:
Below are plots/tables of the simulation results.
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Figure 1: Energy of the n = 12 model. Analytical low and high temperature limits
(for n =∞) are rendered in red.

Figure 2: Heat capacity of the n = 12 model. Analytical low and high temperature
limits (for n =∞) are rendered in red.
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Figure 3: Heat capacity peaks for different system sizes.

Table 1: Estimates of β∗ from parabolic fits to the peaks in Figure 3.
n 8 12 16 20
β∗ 4.82 5.56 6.01 6.71

Finite size effects are usually much smaller than we are seeing in the be-
havior of the heat capacity peaks. A power-law growth of the transition
temperature with n seems consistent with the data. The slope of the log-log
plot of β∗(n) vs. n gives exponent ψ = 0.35 :
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Figure 4: Log-log plot to estimate the exponent ψ.

In Figure 5 we see that the entropy change at the transition appears to stay
extensive, consistent with a limiting value at large n.

Figure 5: Plots of β(e(β) + 1) for three system sizes.
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2. Consider the following very crude model of the low-energy density of states
of the n× n Hadamard model,

ρ(E) = ρ0 δ(E − E0) + ρ1 δ(E − E1),

where the excitation energy E1 − E0 = ∆ = ε nφ is sub-extensive (φ <
2) by the same exponent as the ground state entropy (ε, σ0, σ1 are positive
constants):

ρ0/ρ1 = exp (σ0n
φ − σ1n2).

Show that this model has a discontinuity in the mean energy in the limit
n→∞, but at a critical value of β̃, where β = β̃nψ, for some exponent ψ.
Find ψ and also the behavior of the entropy change, β∆, with n.

Solution: After some algebra that makes the exponential part of the n de-
pendence explicit, we obtain the following expression for the average en-
ergy:

〈E〉 =
E1 + (E1 −∆)e(σ0+β̃εn

ψ)nφ−σ1n2

1 + e(σ0+β̃εnψ)nφ−σ1n2
.

From this we see that the exponential n-dependence switches discontinu-
ously for the case

ψ + φ = 2

at the rescaled inverse temperature

β̃∗ =
σ1
ε
.

In the limit n→∞ we obtain:

〈E〉 =

{
E1, β̃ < β̃∗,

E1 −∆, β̃ > β̃∗.

Since the simulations (see problem 1) indicate ψ ≈ 0.35, this simplified
model predicts φ ≈ 2−0.35 = 1.65 for the ground state entropy exponent1.
The model predicts an extensive entropy change at the transition:

∆S = β∗∆ = (β̃∗nψ)(εnφ) = σ1n
2.

1Y. Berra: “It’s like déjà vu all over again.” (see assignment 1 solutions).



Physics 7653, Fall 2019 6

3. On clear nights humans are naturally inclined to define the “constellation
graph model”, or CGM. The vertices of CGM are stars up to a given magni-
tude (the threshold of vision) and the rule for edges is that each star/vertex
is connected to its nearest neighbor. A fundamental quantity in the CGM
is the average number of stars S in a connected cluster — a constellation.
The stars in CGM are assumed to be distributed uniformly, and their den-
sity is high enough that the sky may be modeled as a flat plane (rather than
a sphere).

In class we showed that every constellation has a unique pair of “core stars”,
defined by the property that each is the other’s nearest neighbor, and

S =
2

pc
,

where pc is the probability that a randomly selected star is a core star. Cal-
culate pc in the CGM and thereby determine S.

Solution: Consider a random star c1 and without generality let its position
define the origin in our plane of stars. This star is a core star if and only if
the nearest star, c2, is the other core star of the constellation. Let r be the
position of c2. The pair c1 and c2 are core stars if and only if there are no
other stars in a region comprising the union of two disks of radius r = |r|
centered on the two stars. Let A(r) = ar2 be the area of this region. Using
high school geometry,

a =
4π

3
+

√
3

2
.

We use the Poisson distribution to determine the probabilities that (i) the
region of area d2r centered on r contains 1 star (c2), and (ii) the union-of-
disks-minus-centers region, of area A(r), contains 0 stars. In both cases we
use for the mean µ of the Poisson distribution,

prob(k) =
µk

k!
e−µ,

the product of the area and the density of stars in the plane, ρ. Integrating
over the possible positions r of c2, weighted by the appropriate probabilities
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of finding stars, gives us the probability that c1 is a core star:

pc =

∫
(ρ d2r) e−ρA(r)

= 2πρ

∫ ∞
0

rdr e−ρar
2

=
π

a
.

Using the high school result above we obtain the average number of stars
per constellation:

S =
2

pc
=

8

3
+

√
3

π
≈ 3.218.

4. In class we calculated two quantities of central importance in the random
graph model:

f =
∞∑
k=1

k〈nk〉/n

s =
∞∑
k=1

k2〈nk〉/n.

We were able to express both of these succinctly in terms of the Lambert
w-function defined by

w(z) =
∞∑
k=1

kk−1

k!
zk,

for |z| < 1/e and showed that w(z) satisfies the implicit equation

z = w(z)e−w(z).

The quantity s is sometimes referred to as the “size” of finite clusters. An
alternative definition of finite cluster size is the following:

s̃ =
f∑∞

k=1〈nk〉/n
.

This corresponds to the definition we used in the CGM2.

2Sadly, there are no percolating mega-constellations in the CGM, so always f = 1.
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(a) Contrast in your own words the two definitions of “size”.
Solution: The quantity s is a property of the vertices: the total num-
ber of vertices an average vertex is connected to (including itself), or
equivalently, the size of cluster a vertex belongs to, averaged over all
vertices in the random graph ensemble. By contrast, s̃ is a property
of the clusters: the cluster size (number of vertices) averaged over
clusters.

(b) Express s̃ explicitly in terms of the w-function. To get started, first
show that the function

v(z) =
∞∑
k=1

kk−2

k!
zk,

satisfies the differential equation v′ = (1−w)w′ (which is easily inte-
grated).
Solution: Working with the Taylor series for v(z) we obtain

zv′ = w.

Next, using the implicit definition of w(z) above to substitute for w/z,
we obtain

v′ = ew.

We can also take the derivative of the implicit definition of w(z); this
produces

1 = (1− w)e−ww′.

Combining the last two equations,

v′ = (1− w)w′,

and integrating we obtain

v = w − w2

2
+ C.

Going back to the Taylor series for v(z) and w(z) we see that the
constant C is zero.
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(c) Using the result of part (b) obtain the explicit formula

s̃(d) =

{
(1− d/2)−1 , d < 1

(1− d̃(d)/2)−1 , d > 1,

where d̃(d) is the dual-degree function (the non-trivial solution of
d̃e−d̃ = de−d). Make a sketch of s̃(d).
Solution:

s̃ =
f∑∞

k=1〈nk〉/n

=
w(z)/d

v(z)/d

=
1

1− w(z)/2
.

This evaluates to two forms, depending on whether the mean degree
d is less than or greater than 1 (just as in lecture for the fraction f ) .
When d < 1, w(de−d) = d, while for d > 1, w(de−d) = d̃ (the dual
degree).


