## Assignment 3 Solutions

1. Customize your Hadamard-model simulator - or one of the contributed simulators from the course Github site - to address a number of outstanding features of the model. At a minimum you want to be able to specify, for one run: $n$, the range and increment for $\beta$, and the number of sweeps in the average at each $\beta$. The output should list the energy $e$ and heat capacity $c$ at each $\beta$, along with estimates of the errors. Here are the simulations for this assignment:

- For $n=12$ make plots of $e(\beta)$ and $c(\beta)$ for $\beta$ between 0 and 10 , with sufficiently small increments to resolve the abrupt drop in energy and see the heat capacity peak as a hill rather than a single point. Check that $e(\beta)$ and $c(\beta)$ agree with the high temperature limit from the previous assignment and the equipartition forms $e(\beta) \sim-1+1 /(4 \beta)$, $c(\beta) \sim 1 / 4$ at large $\beta$ (where the Hamiltonian can be approximated as a quadratic potential for $n^{2} / 2$ degrees of freedom).
- Locate the transition $\beta^{*}$ for $n=8,12,16,20(n=24$ is probably out of reach, but you are welcome to try) by the maximum of $c(\beta)$. An outstanding question is whether the apparent increase of $\beta^{*}(n)$ with $n$ (for those $n$ that have Hadamard ground states) is just a "finite size effect", and $\beta^{*}(n)$ approaches a finite limit, or whether $\beta^{*}(n) \propto n^{\psi}$ for some positive exponent $\psi$. Which hypothesis is best supported by your four data points?
- How do the entropy changes $\beta^{*} \Delta e\left(\beta^{*}\right)$ at the transitions depend on $n$ ? For this it will probably be easier to look at plots of $\beta(e(\beta)+1)$ near the transition, rather than the $c(\beta)$ plots you used to locate $\beta^{*}$.
- What can you say about the model at the oddly-even sizes $n=10,14,18,22$, which do not have Hadamard ground states?


## Solution:

Below are plots/tables of the simulation results.


Figure 1: Energy of the $n=12$ model. Analytical low and high temperature limits (for $n=\infty$ ) are rendered in red.


Figure 2: Heat capacity of the $n=12$ model. Analytical low and high temperature limits (for $n=\infty$ ) are rendered in red.


Figure 3: Heat capacity peaks for different system sizes.

Table 1: Estimates of $\beta^{*}$ from parabolic fits to the peaks in Figure 3.

| $n$ | 8 | 12 | 16 | 20 |
| :---: | ---: | ---: | ---: | ---: |
| $\beta^{*}$ | 4.82 | 5.56 | 6.01 | 6.71 |

Finite size effects are usually much smaller than we are seeing in the behavior of the heat capacity peaks. A power-law growth of the transition temperature with $n$ seems consistent with the data. The slope of the log-log plot of $\beta^{*}(n)$ vs. $n$ gives exponent $\psi=0.35$ :


Figure 4: Log-log plot to estimate the exponent $\psi$.
In Figure 5 we see that the entropy change at the transition appears to stay extensive, consistent with a limiting value at large $n$.


Figure 5: Plots of $\beta(e(\beta)+1)$ for three system sizes.
2. Consider the following very crude model of the low-energy density of states of the $n \times n$ Hadamard model,

$$
\rho(E)=\rho_{0} \delta\left(E-E_{0}\right)+\rho_{1} \delta\left(E-E_{1}\right)
$$

where the excitation energy $E_{1}-E_{0}=\Delta=\epsilon n^{\phi}$ is sub-extensive $(\phi<$ 2 ) by the same exponent as the ground state entropy ( $\epsilon, \sigma_{0}, \sigma_{1}$ are positive constants):

$$
\rho_{0} / \rho_{1}=\exp \left(\sigma_{0} n^{\phi}-\sigma_{1} n^{2}\right)
$$

Show that this model has a discontinuity in the mean energy in the limit $n \rightarrow \infty$, but at a critical value of $\tilde{\beta}$, where $\beta=\tilde{\beta} n^{\psi}$, for some exponent $\psi$. Find $\psi$ and also the behavior of the entropy change, $\beta \Delta$, with $n$.
Solution: After some algebra that makes the exponential part of the $n$ dependence explicit, we obtain the following expression for the average energy:

$$
\langle E\rangle=\frac{E_{1}+\left(E_{1}-\Delta\right) e^{\left(\sigma_{0}+\tilde{\beta} \epsilon n^{\psi}\right) n^{\phi}-\sigma_{1} n^{2}}}{1+e^{\left(\sigma_{0}+\tilde{\beta} \epsilon n^{\psi}\right) n^{\phi}-\sigma_{1} n^{2}}} .
$$

From this we see that the exponential $n$-dependence switches discontinuously for the case

$$
\psi+\phi=2
$$

at the rescaled inverse temperature

$$
\tilde{\beta}^{*}=\frac{\sigma_{1}}{\epsilon} .
$$

In the limit $n \rightarrow \infty$ we obtain:

$$
\langle E\rangle= \begin{cases}E_{1}, & \tilde{\beta}<\tilde{\beta}^{*} \\ E_{1}-\Delta, & \tilde{\beta}>\tilde{\beta}^{*}\end{cases}
$$

Since the simulations (see problem 1) indicate $\psi \approx 0.35$, this simplified model predicts $\phi \approx 2-0.35=1.65$ for the ground state entropy exponent ${ }^{1}$. The model predicts an extensive entropy change at the transition:

$$
\Delta S=\beta^{*} \Delta=\left(\tilde{\beta}^{*} n^{\psi}\right)\left(\epsilon n^{\phi}\right)=\sigma_{1} n^{2}
$$

[^0]3. On clear nights humans are naturally inclined to define the "constellation graph model", or CGM. The vertices of CGM are stars up to a given magnitude (the threshold of vision) and the rule for edges is that each star/vertex is connected to its nearest neighbor. A fundamental quantity in the CGM is the average number of stars $S$ in a connected cluster - a constellation. The stars in CGM are assumed to be distributed uniformly, and their density is high enough that the sky may be modeled as a flat plane (rather than a sphere).

In class we showed that every constellation has a unique pair of "core stars", defined by the property that each is the other's nearest neighbor, and

$$
S=\frac{2}{p_{\mathrm{c}}}
$$

where $p_{\mathrm{c}}$ is the probability that a randomly selected star is a core star. Calculate $p_{\mathrm{c}}$ in the CGM and thereby determine $S$.
Solution: Consider a random star $c_{1}$ and without generality let its position define the origin in our plane of stars. This star is a core star if and only if the nearest star, $c_{2}$, is the other core star of the constellation. Let $\mathbf{r}$ be the position of $c_{2}$. The pair $c_{1}$ and $c_{2}$ are core stars if and only if there are no other stars in a region comprising the union of two disks of radius $r=|\mathbf{r}|$ centered on the two stars. Let $A(r)=a r^{2}$ be the area of this region. Using high school geometry,

$$
a=\frac{4 \pi}{3}+\frac{\sqrt{3}}{2} .
$$

We use the Poisson distribution to determine the probabilities that (i) the region of area $d^{2} r$ centered on $\mathbf{r}$ contains 1 star ( $c_{2}$ ), and (ii) the union-of-disks-minus-centers region, of area $A(r)$, contains 0 stars. In both cases we use for the mean $\mu$ of the Poisson distribution,

$$
\operatorname{prob}(k)=\frac{\mu^{k}}{k!} e^{-\mu},
$$

the product of the area and the density of stars in the plane, $\rho$. Integrating over the possible positions $\mathbf{r}$ of $c_{2}$, weighted by the appropriate probabilities
of finding stars, gives us the probability that $c_{1}$ is a core star:

$$
\begin{aligned}
p_{\mathrm{c}} & =\int\left(\rho d^{2} r\right) e^{-\rho A(r)} \\
& =2 \pi \rho \int_{0}^{\infty} r d r e^{-\rho a r^{2}} \\
& =\frac{\pi}{a} .
\end{aligned}
$$

Using the high school result above we obtain the average number of stars per constellation:

$$
S=\frac{2}{p_{\mathrm{c}}}=\frac{8}{3}+\frac{\sqrt{3}}{\pi} \approx 3.218
$$

4. In class we calculated two quantities of central importance in the random graph model:

$$
\begin{aligned}
f & =\sum_{k=1}^{\infty} k\left\langle n_{k}\right\rangle / n \\
s & =\sum_{k=1}^{\infty} k^{2}\left\langle n_{k}\right\rangle / n
\end{aligned}
$$

We were able to express both of these succinctly in terms of the Lambert $w$-function defined by

$$
w(z)=\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} z^{k},
$$

for $|z|<1 / e$ and showed that $w(z)$ satisfies the implicit equation

$$
z=w(z) e^{-w(z)}
$$

The quantity $s$ is sometimes referred to as the "size" of finite clusters. An alternative definition of finite cluster size is the following:

$$
\tilde{s}=\frac{f}{\sum_{k=1}^{\infty}\left\langle n_{k}\right\rangle / n} .
$$

This corresponds to the definition we used in the CGM ${ }^{2}$.

[^1](a) Contrast in your own words the two definitions of "size".

Solution: The quantity $s$ is a property of the vertices: the total number of vertices an average vertex is connected to (including itself), or equivalently, the size of cluster a vertex belongs to, averaged over all vertices in the random graph ensemble. By contrast, $\tilde{s}$ is a property of the clusters: the cluster size (number of vertices) averaged over clusters.
(b) Express $\tilde{s}$ explicitly in terms of the $w$-function. To get started, first show that the function

$$
v(z)=\sum_{k=1}^{\infty} \frac{k^{k-2}}{k!} z^{k},
$$

satisfies the differential equation $v^{\prime}=(1-w) w^{\prime}$ (which is easily integrated).
Solution: Working with the Taylor series for $v(z)$ we obtain

$$
z v^{\prime}=w .
$$

Next, using the implicit definition of $w(z)$ above to substitute for $w / z$, we obtain

$$
v^{\prime}=e^{w}
$$

We can also take the derivative of the implicit definition of $w(z)$; this produces

$$
1=(1-w) e^{-w} w^{\prime}
$$

Combining the last two equations,

$$
v^{\prime}=(1-w) w^{\prime},
$$

and integrating we obtain

$$
v=w-\frac{w^{2}}{2}+C
$$

Going back to the Taylor series for $v(z)$ and $w(z)$ we see that the constant $C$ is zero.
(c) Using the result of part (b) obtain the explicit formula

$$
\tilde{s}(d)=\left\{\begin{array}{cc}
(1-d / 2)^{-1}, & d<1 \\
(1-\tilde{d}(d) / 2)^{-1}, & d>1
\end{array}\right.
$$

where $\tilde{d}(d)$ is the dual-degree function (the non-trivial solution of $\left.\tilde{d} e^{-\tilde{d}}=d e^{-d}\right)$. Make a sketch of $\tilde{s}(d)$.

## Solution:

$$
\begin{aligned}
\tilde{s} & =\frac{f}{\sum_{k=1}^{\infty}\left\langle n_{k}\right\rangle / n} \\
& =\frac{w(z) / d}{v(z) / d} \\
& =\frac{1}{1-w(z) / 2}
\end{aligned}
$$

This evaluates to two forms, depending on whether the mean degree $d$ is less than or greater than 1 (just as in lecture for the fraction $f$ ). When $d<1, w\left(d e^{-d}\right)=d$, while for $d>1, w\left(d e^{-d}\right)=\tilde{d}$ (the dual degree).



[^0]:    ${ }^{1}$ Y. Berra: "It's like déjà vu all over again." (see assignment 1 solutions).

[^1]:    ${ }^{2}$ Sadly, there are no percolating mega-constellations in the CGM, so always $f=1$.

