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Due date: Thursday, September 26

1. Find a computer on which you can compile and run the hard matrix model
simulation program hmm.c. You only need the standard C programming
libraries. If you have the GNU C compiler on your system, the program is
compiled with this command

gcc -O3 hmm.c -lm -o hmm

The flag -O3 optimizes the compiled machine instructions, -lm calls the
math library (for fabs( ) and sqrt( )), and -o hmm is the way to
give your compiled program the name hmm (but you may call it whatever
you wish).

Next, try running the program to simulate the HMM for n = 12 and β =
5.5. Here is the command line for that:

./hmm 12 5.5 1000 5 test & <return>

If you forget the order of arguments, just run the command without any
arguments

./hmm <return>

and you will get the reminder

expected 5 arguments: n beta sweeps runs outfile

In the command above we specified 1000 sweeps, 5 runs, and the name
test for the output file. The & at the end of the command line puts the
“job” in the “background”, so you can do other things on the computer
while it’s simulating the HMM. Assuming things went fine, the file test
will have the parameters in the first line followed by

run-number energy heat-capacity rubicons Givens-angle

in each of five lines (the number of runs). The first three are clear and the
rubicon number is just the average number of matrix elements that change
sign in one sweep. The program adjusts the maximum Givens angle (last
number in each line) so the acceptance rate of the transitions is 50%.

To demonstrate that you are able to use the program, locate the β’s of the
first order transitions for n = 12 and n = 16. Hadamard matrices exist for
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those orders, so there can be a kind of equilibrium between a “fluid” and
“crystal” (Hadamard) phase, marked by a maximum in the heat capacity.
The peak gets both higher and sharper in the thermodynamic limit. One
million sweeps are sufficient to find the n = 16 transition. In 2019, with
one billion sweeps, we were even able to locate the n = 20 transition.

2. The program hmm.c represents the simplest experimental protocol. There
is nothing like heating or cooling, where the temperature is incremented or
decremented at regular intervals. The user sets the inverse temperature and
the program equilibrates and measures the model at that same temperature.
This makes it convenient to do multiple experiments at different tempera-
tures β, or different n, just by issuing multiple command lines with suitably
names output files. Current computers can run multiple “threads” simul-
taneously, so you might be able to run 16 experiments in the same time it
takes to run just one.

The results of the “runs” are not aggregated in any way, say by averaging.
Think of each run as an experiment in an actual lab on a real system. The
different outcomes let you assess whether the system equilibrates to have
unique averages (energy, heat capacity), or shows signs of non-equilibrium
behavior (e.g. gets stuck in nonunique states). Five runs (at the same n and
β) is plenty. If the five measurements are just as dispersed with 107 seeps as
with 106, then your matrices are probably getting stuck because the rubicon
number is too low.

Show that you understand how hmm.c implements the simple experimen-
tal protocol by adding comments. How is the system initialized? How is
the Givens angle optimized during equilibration? What is the point of the
function orthogonalize( )?

3. The Constellation Graph Model (CGM) is the 1-nearest-neighbor graph
model (of contemporary data science) for the special case that the data nodes
are uniformly distributed in the plane1. In lecture we learned that the con-
nected clusters (of stars) are always trees, and that each tree always has a
unique pair of stars that are mutual nearest neighbors. Call the distinguished
stars core stars. The average constellation “size” can be defined as

s =
total number of stars

total number of constellations
=

2

pcore
,

1The sky, when the range of angles is small.
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where pcore is the probability any randomly selected star is a core star. Cal-
culate s by calculating pcore. You will need to use the Poisson distribution,
which says that if stars have uniform areal density σ, then the probability of
finding k stars in a region of area A is

pk =
(σA)k

k!
e−σA.

4. In lecture we studied a quantity of central importance in the Random Graph
Model (RGM), the fraction of nodes in finite connected clusters:

f =
1

n

∞∑
k=1

k〈nk〉 . (1)

We were able to express f as a function of the mean degree d, both below
and above d = 1, in terms of Lambert’s w function:

f(d) =
w(de−d)

d
. (2)

The w function has power series

w(z) =
∞∑
k=1

kk−1

k!
zk, (3)

converging for |z| < 1/e, which is all we need for any d 6= 1, and satisfies
the implicit equation

z = w(z)e−w(z). (4)

Here are two ways to define the average “size” of the finite connected clus-
ters:

s1 =

( ∞∑
k=1

k〈nk〉
)
/

( ∞∑
k=1

〈nk〉
)

s2 =

( ∞∑
k=1

k2〈nk〉
)
/

( ∞∑
k=1

k〈nk〉
)
.

(a) Contrast in words the two definitions of size. One of these coincides
with how size was defined for the CGM, which one?

(b) Using (1)-(4) express s1 and s2 explicitly in terms of the w function.
(c) Re-express s1 and s2 even more explicitly in terms of just d and the

dual degree d̃(d), depending on whether d < 1 or d > 1. Sketch the
two “sizes” as a function of d.


