
Physics 7653, Fall 2019 1

Assignment 2 Solutions

1. Estimate the effective hard-sphere radius of the Helium atom knowing only
that (i) the solid and gas phases coexist at 297 K and 115 kbar , and (ii)
the solid/gas transition in the hard-sphere model occurs at dimensionless
pressure p∗ = 11.56.

Solution: The unit of pressure in the hard-sphere model is

p0 =
kBT

a3

where a is the hard-sphere diameter (the closest separation of sphere cen-
ters). The solid-gas transition in this model occurs at dimensionless pressure

p/p0 = p∗ = 11.56.

Combining these,

r = a/2 =
1

2

(
p

11.56 kBT

)1/3

,

and using the measured (T = 297 K, p = 115 kbar) at coexistence, we
obtain

r = 0.31 Å.

This agrees with what is called the “covalent radius” of Helium. It is nice
to see that this microscopic length can be obtained from two macroscopic
measurements (coexistence temperature and pressure) and a pure number
(11.56).

2. Let u and v be two elements of an n × n orthogonal matrix U . Find the
joint probability distribution f(u, v) for the uniform measure on U for three
cases of u and v: (i) they are the same element, (ii) they are distinct but
lie on the same row or column, (iii) they lie on distinct rows and columns.
Only work out the limiting form for n→∞ and ignore normalization.

Solution: Let

X =

[
w x
y z

]
be the 2×2 submatrix of U that includes the elements u and v (either on the
same row/column or different). Let a and b be (n− 2)-component vectors

Physics 7653, Fall 2019 2

corresponding to the remaining elements in the two rows. We are interested
in the volume element

dw dx dy dz dn−2a dn−2b δ(w2+x2+a2−1) δ(y2+z2+b2−1) δ(wy+xz+a·b),

where two of the delta-function factors impose the unit norm constraint on
the rows and the third keeps them orthogonal. We are going to integrate-out
a and b to obtain the distribution of the sub-matrix elements.

We first integrate over a and decompose

dn−2a = dn−3a⊥ da‖,

where a‖ is the component colinear with b. This integral only involves two
of the delta functions:

f ∝
∫
dn−3a⊥

∫
da‖ δ(w

2 + x2 + a2‖ + a2⊥ − 1) δ(wy + xz + a‖b)

∝
∫
dn−3a⊥

1

b
δ

(
w2 + x2 +

(
wy + xz

b

)2

+ a2⊥ − 1

)
∝ a⊥(b)

n−5/b,

where

a⊥(b)
2 = 1− w2 − x2 −

(
wy + xz

b

)2

.

Next, including the third delta function, we integrate over b:

f ∝
∫
dn−2b

a⊥(b)
n−5

b
δ(y2 + z2 + b2 − 1)

∝ bn−5 a⊥(b)
n−5,

where
b2 = 1− y2 − z2.

Next we discover a very nice fact:

b2 a⊥(b)
2 = (1− y2 − z2)(1− w2 − x2)− (wy + xz)2

= det

[
1− w2 − x2 −wy − xz
−wy − xz 1− y2 − z2

]
= det(1−XXT).

Physics 7653, Fall 2019 3

This gives us the most compact way of writing the distribution of the sub-
matrix elements:

f(X) ∝ det(1−XXT)
n−5
2 .

As a counterpart of Archimedes’ hat-box theorem, now for 2 × 2 sub-
matrices within a uniformly sampled orthogonal matrix U , we see that the
elements of the sub-matrix are uniformly distributed when U is 5× 5.

To arrive at the two pair-distributions you were given on the course website,
first expand the exact sub-matrix distribution for XXT = O(1/n), includ-
ing all terms up to 1/n2 corrections. The result will be the Gaussian

e−(n/2)(w
2+x2+y2+z2)

times a polynomial factor. Next, replace two of the elements by u and v and
integrate-out the other two.

3. Analytically calculate the α = 1 Hadamard-model partition function Z to
order β2 (leading terms of the “high temperature expansion”). You will need
to use the three results above, for the joint distribution of matrix elements.
By taking derivatives of logZ obtain the mean energy to order β and heat
capacity to order β2. As a check, these should both scale as n2 (the naive
“volume” of the system). With n2 divided out we will denote these e(β)
and c(β). In a future assignment you will use these results to check your
Hadamard simulation at high temperatures.

Solution:
First expand Z to order β2:

Z =

∫
dU

(
1 + β

√
n
∑
ij

|Uij|+
1

2
β2n

∑
ij

∑
kl

|Uij||Ukl|+ · · ·

)
= 1 + β

√
nn2〈|u|〉+

1

2
β2n

(
n2〈|u|2〉+ 2n2(n− 1)〈|u||v|〉1 + n2(n− 1)2〈|u||v|〉2

)
+ · · ·

The angle brackets mean “uniform average over orthogonal matrices”, and
the subscripts 1 and 2 denote, respectively, elements on the same or different
row/column. We compute these averages using the distributions f1 and f2
from the website, noting that these are even functions of u and v so the
integrals over u and v may be restricted to the range (0,∞) and the absolute

Physics 7653, Fall 2019 4

values above can be removed. For the averages over a single element we
may use either f1 or f2. Here are the results:

√
nn2〈|u|〉 = n2

(√
2

π
+

1

2
√
2π n

+
1

16
√
2π n2

+ · · ·

)
n3〈|u|2〉 = n2

2n3(n− 1)〈|u||v|〉1 = n3

(
4

π
− 4

π n
+ · · ·

)
n3(n− 1)2〈|u||v|〉2 = n4

(
2

π
− 3

π n
+

5

4π n2
+ · · ·

)
.

Only the second of these is a finite expression (the defining property of
orthogonal matrices) — for the rest only as many terms are included as we
need to calculate logZ to O(β2) and the leading order in “volume”, n2:

logZ = n2

(
β

√
2

π
+
β2

2

(
1− 3

π

)
+O(β3)

)
+O(n).

From this we obtain the high temperature limits of the energy and heat ca-
pacity (per matrix element):

e(β) =

(
− ∂

∂β
logZ

)
/n2 = −

√
2

π
− β

(
1− 3

π

)
+ · · ·

c(β) =

(
β2 ∂

2

∂β2
logZ

)
/n2 = β2

(
1− 3

π

)
+ · · ·

Physics 7653, Fall 2019 5

4. Learn how to wrap the efficient Givens-rotation function you worked out in
the last assignment in a working piece of executable code in the language
of you choice. Estimate the energy e(β) and heat capacity c(β) at β = 5.5
for n = 12. Demonstrate that your sampling time T for these averages is
sufficient (greater than the mixing time) by checking that the statistical error
for sampling time NT decreases as 1/

√
N .

Solution:
I ended up writing everything in C, but look forward to seeing more inter-
esting solutions! My C code is appended and will also be made available on
the course Github site. It has a modular design that should make life easy
in forthcoming assignments. The main() in this version is set up to check
convergence with respect to the number of sweeps for a fixed n = 12 and
β = 5.5. Here is the output:

sweeps mean energy heat capacity

16 -0.932093926 +/- 0.001156354 0.162263063 +/- 0.012572
64 -0.941703509 +/- 0.002371654 0.394436733 +/- 0.072660

256 -0.942983670 +/- 0.001784216 0.716368853 +/- 0.058590
1024 -0.943288847 +/- 0.000799536 0.926331417 +/- 0.021191
4096 -0.943328850 +/- 0.000389784 0.978457616 +/- 0.008574
16384 -0.943297388 +/- 0.000280087 0.992133992 +/- 0.004568
65536 -0.943147251 +/- 0.000103103 1.001298635 +/- 0.001949
262144 -0.943058885 +/- 0.000066475 1.001615650 +/- 0.000595

When the number of sweeps exceeds 103 the error estimate decreases by
about a factor of 2 whenever the number of samples (sweeps) is increased
by a factor of 4 — as it should when the 20 blocks being used to estimate
the error are statistically independent. This number of sweeps is therefore a
rough estimate of the mixing time (for this n and β). Since heat capacity is
a measure of the fluctuations in the energy, it is not surprising that the heat
capacity has a larger error than the energy.

There are two deficiencies in my code that have to be addressed when seek-
ing higher precision results. First, a higher quality pseudo-random number
generator should replace C’s rand(). Second, after very many Givens ro-
tations the orthogonality ofU is compromised as a result of the inexact float-
ing point arithmetic. One remedy for that is to periodically re-orthogonalize

Physics 7653, Fall 2019 6

U . An easier strategy, and the one in place now, is to periodically (at the start
of each averaging block) initialize U to the identity matrix. This only works
when the accumulation of floating point errors is not significant within the
mixing time (the smallest averaging time).

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

#define NMAX 100
#define B 20

int n;
double h[NMAX][NMAX],u[NMAX],v[NMAX];
double energy,angle,beta,twopi,accept;

double urand()
{
return ((double)rand())/RAND_MAX;
}

void rowrot(int i,int j,double a)
{
int k;
double eold,enew,c,s;

eold=0.;
for(k=0;k<n;++k)
{
u[k]=h[i][k];
v[k]=h[j][k];

eold+=-fabs(u[k])-fabs(v[k]);
}

c=cos(a);
s=sin(a);

enew=0.;
for(k=0;k<n;++k)
{
h[i][k]=c*u[k]+s*v[k];
h[j][k]=-s*u[k]+c*v[k];

enew+=-fabs(h[i][k])-fabs(h[j][k]);
}

if(exp(-beta*(enew-eold))>urand())
{
energy+=enew-eold;
accept++;
}

else
for(k=0;k<n;++k)

{
h[i][k]=u[k];
h[j][k]=v[k];
}

}

void colrot(int i,int j,double a)
{
int k;
double eold,enew,c,s;

eold=0.;
for(k=0;k<n;++k)
{
u[k]=h[k][i];

Physics 7653, Fall 2019 7

v[k]=h[k][j];

eold+=-fabs(u[k])-fabs(v[k]);
}

c=cos(a);
s=sin(a);

enew=0.;
for(k=0;k<n;++k)
{
h[k][i]=c*u[k]+s*v[k];
h[k][j]=-s*u[k]+c*v[k];

enew+=-fabs(h[k][i])-fabs(h[k][j]);
}

if(exp(-beta*(enew-eold))>urand())
{
energy+=enew-eold;
accept++;
}

else
for(k=0;k<n;++k)

{
h[k][i]=u[k];
h[k][j]=v[k];
}

}

double sweep()
{
int i,j;
double a;

accept=0;

for(i=0;i<n-1;++i)
for(j=i+1;j<n;++j)
{
a=angle*(urand()-.5);
rowrot(i,j,a);

a=angle*(urand()-.5);
colrot(i,j,a);
}

return ((double)accept)/(n*(n-1));
}

void init(int sweeps)
{
int i,j,s;

for(i=0;i<n;++i)
for(j=0;j<n;++j)
h[i][j]=0.;

for(i=0;i<n;++i)
h[i][i]=sqrt((double)n);

energy=-sqrt((double)n)*n;

twopi=4.*acos(0.);
angle=twopi;

for(s=0;s<sweeps;++s)
{

if(sweep()<.5)
angle*=.99;

else
{
angle*=1.01;
if(angle>twopi)

angle=twopi;

Physics 7653, Fall 2019 8

}
}

}

void average(int sweeps,double *aenergy,double *heatcap)
{
int s;
double e,e2;

init(sweeps);

e=0.;
e2=0.;

for(s=0;s<sweeps;++s)
{
sweep();

e+=energy;
e2+=energy*energy;
}

e/=sweeps;
e2/=sweeps;

*aenergy=e/(n*n);

*heatcap=beta*beta*(e2-e*e)/(n*n);
}

void measure(int sweeps,double *eave,double *eerr,double *cave,double *cerr)
{
int b;
double e,c,eave2,cave2;

*eave=0.;
eave2=0.;

*cave=0.;
cave2=0.;

for(b=0;b<B;++b)
{
average(sweeps,&e,&c);

*eave+=e;
eave2+=e*e;

*cave+=c;
cave2+=c*c;
}

*eave/=B;
eave2/=B;

*eerr=sqrt((eave2-(*eave)*(*eave))/B);

*cave/=B;
cave2/=B;

*cerr=sqrt((cave2-(*cave)*(*cave))/B);
}

int main(int argc,char* argv[])
{
int p,sweeps;
char *outfile;
double eave,eerr,cave,cerr;
FILE *fptr;

if(argc==4)
{
n=atoi(argv[1]);
beta=atof(argv[2]);
outfile=argv[3];
}

else

Physics 7653, Fall 2019 9

{
printf("expected three arguments: n, beta, outfile\n");
return 1;
}

fptr=fopen(outfile,"w");
fprintf(fptr," sweeps mean energy heat capacity\n\n");
fclose(fptr);

srand(time(NULL));

sweeps=16;

for(p=0;p<8;++p)
{
measure(sweeps,&eave,&eerr,&cave,&cerr);

fptr=fopen(outfile,"a");
fprintf(fptr,"%12d%14.9lf +/-%12.9lf %14.9lf +/-%12.9lf\n",sweeps,eave,eerr,cave,cerr);
fclose(fptr);

sweeps*=4;
}

return 0;
}

