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Due date: Thursday, September 26

Starting with this second homework assignment you will get a few problems that
expand on topics from the lectures, and at least one problem that builds on previ-
ous work on the Hadamard model.

1. Estimate the effective hard-sphere radius1 of the Helium atom knowing only
that (i) the solid and gas2 phases coexist3 at 297 K and 115 kbar , and (ii)
the solid/gas transition in the hard-sphere model occurs at dimensionless
pressure p∗ = 11.56.

2. Let u and v be two elements of an n × n orthogonal matrix U . Find the
joint probability distribution f(u, v) for the uniform measure on U for three
cases of u and v: (i) they are the same element, (ii) they are distinct but
lie on the same row or column, (iii) they lie on distinct rows and columns.
Only work out the limiting form for n→∞ and ignore normalization.

3. Analytically calculate the α = 1 Hadamard-model partition function Z to
order β2 (leading terms of the “high temperature expansion”). You will need
to use the three results above, for the joint distribution of matrix elements.
By taking derivatives of logZ obtain the mean energy to order β and heat
capacity to order β2. As a check, these should both scale as n2 (the naive
“volume” of the system). With n2 divided out we will denote these e(β)
and c(β). In a future assignment you will use these results to check your
Hadamard simulation at high temperatures.

1Radius is half the diameter.
2I prefer to refer to the non-solid phase as a gas, not a liquid, because it is not self-bound

(prefers a particular density). However, at these high pressures this gas of Helium atoms is very
far from ideal.

3Pinceaux, J-P., J-P. Maury, and J-M. Besson. “Solidification of helium, at room temperature
under high pressure.” Journal de Physique Lettres 40.13 (1979): 307-308.
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4. Learn how to wrap the efficient Givens-rotation function you worked out in
the last assignment in a working piece of executable code in the language
of you choice. Estimate the energy e(β) and heat capacity c(β) at β = 5.5
for n = 12. Demonstrate that your sampling time T for these averages is
sufficient (greater than the mixing time) by checking that the statistical error
for sampling time NT decreases as 1/

√
N .

Here are some general remarks meant to make both your work and that of
the grader easier!

• Keep your code simple! At this stage we are just seeking consensus
on two numbers. Worry about the fancy user-interface in the next as-
signment.

• We are open to all reasonable options for optimizing the Markov-chain
“engine.” If you like Python, you should consider some of the tips
found here:

https://wiki.python.org/moin/PythonSpeed/PerformanceTips

It’s even possible that some combination of Numpy methods can be
hacked to build an efficient engine. If so, it will be interesting to see
how that performs compared to C. If you’ve gone to the trouble of
learning enough C to write the engine, then it’s actually not that much
additional work to write the wrapper in C as well (but beware that
declaring, allocating, printing, and reading input are much more cum-
bersome than in Python). Finally there are now things such as Cython,
Pyrex, etc. that offer a way to integrate compiled low-level code with
Python. If anyone follows that route, and the overhead is low, please
let the rest of us know!

• Don’t compute c(β) as a finite difference, but work out analytically
something the Markov chain can average directly.

• You might want to include the acceptance/rejection step in your com-
piled function, as in the solution for the first assignment, as that avoids
passing the row/column pair as arguments (another source of Python
overhead).

• Here’s a way to combine (i) eliminating initialization transients and
(ii) convergence testing. Fix the number of sampling blocks N , some-
thing not too small or large, like N = 20. Try a series of sample
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block sizes T , starting with something small, like T = 103 (for imme-
diate feedback). In each block compute your averages and also their
errors. Disregard these in the first block (N = 0) because results will
be skewed by the initialization. You will know that T is large enough
when the averages in the remaining blocks look like they are indepen-
dently distributed and not showing drift. Report the average of the
blocks and the standard error when that is achieved. Increasing T (or
N ) further will then systematically reduce the error.

• The only optimization knob at your disposal is selecting the range
of the Givens angle in each proposed transition — use it! When set
poorly the acceptance probability a will be either very small or nearly
1. In my code I adjust the range dynamically: when a is greater than
50% I make slightly more aggressive proposals by multiplying the
range by a factor slightly greater than 1, when below 50% I decrease
the range by a factor slightly less than 1. All this is done in block
N = 0 (another reason not to take the results of this block seriously)
and the range is fixed in the subsequent blocks. Print out the range pa-
rameter that was selected. Later, when we vary β, it will be interesting
to see how the optimized range varies.

• It is common practice to apply elementary transitions to the entire sys-
tem — a “sweep” — between computing averages. For the Hadamard
model a sweep comprises proposed Givens rotations to all pairs of
rows and all pairs of columns. The number of sweeps will be our
Markov chain “time” rather than the number of Givens rotations.


