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Assignment 2
Due date: Wednesday, March 6

Asymptotics of the distribution of field strength

In lecture we will derive the distribution of electric field strengths £ produced by a
random distribution of equal point charges in a 3D material. Our solution will be
given in terms of the following integral:

1 . _ 3/2
R(a) = ﬁ/xsmxe @/ dy,
where «a is a dimensionless parameter proportional to £. Because there is no closed-
form expression for this integral we use asymptotic analysis to study its behavior.
The first step, in general, is to express the integral in the canonical form

1(t) = /C f(2) 4z,

where (' is a suitable contour in the complex plane and we are interested in the limit
t — oo so that the contour integral is dominated by the contribution at a saddle point
or endpoint. We see that R(a) is already of this form if we are interested in the
distribution for weak fields, or a — 0. Your assignment is to study the opposite limit,
a — 00.

1. Make the change of variables (z/a)*? = 2* and express R(a) as the imaginary
part of an integral in the canonical form. What are the functions f and ¢?

2. Sketch (by hand) level sets of both the real and imaginary parts of ¢. The
original integration contour C' was along the positive real axis with endpoint at
the origin. Modify C' to take advantage of the saddle point at the origin and
thereby obtain the leading behavior of R(a) for large a.

Continued fractions

In lecture we will derive the formula

p(a) = log, (1 + m) (1)

for the probability of partial quotients ¢ = 1, 2, 3, . . . in the continued fraction expan-
sion of a “random” number. Clearly there are exceptions, such as all the quadratic
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irrationals, whose partial quotients do not have this distribution. What about v/2? In
the first part of this assignments you will design and run a computer program that
computes the partial quotients of /2 to test whether this number is “random” from
the continued fraction perspective. In the second part you will compute the Lypunov
exponent of the continued fraction process, a quantity that is directly related to the
entropy of the partial quotients.

(a) The continued fraction process is the iteration

o = b () = — — FJ ,

Tn Tn
where the second (floor operation) term is the partial quotient a,,. Here’s a method
for computing the partial quotients that only uses integer arithmetic. The trick is
to iteratively generate a sequence of polynomials py(z), pi(z), ... , all with integer
coefficients, and whose only real roots are the iterates zg, z1, ... in the continued
fraction process starting with z:y = +/2. For the first polynomial we can use

po(z) = 3 — 2,

since its only real root is zzy = +/2. To generate p; (), p2(z), . . . we use the reflection
and translation transformations
R =1 ()
Tlp(x)] = p(z +1).
Verify that these always produce cubic polynomials with integer coefficients and a
single real root. Describe how the continued fraction process can be simulated —
with only integer arithmetic — by combining these transformations. Explain why
the integer coefficients of the polynomials must be able to get arbitrarily large if z( is
indeed “random”. Finally, write a program to generate the first 1000 partial quotients
of v/2. Are the frequencies you find consistent with distribution (1)?

(b) The statement that the partial quotients of a particular number are distributed
according to (1) rests on the property of ergodicity. Think of the set of possible
starting values, z(, as defining an “ensemble” and the index 7 as a kind of “time”.
When ergodicity holds, ensemble averages equal time averages.

Ergodicity is clearly helped when (cf)"(z¢) = =z, depends sensitively on z,. A
standard measure of this sensitivity is the Lyapunov exponent:

A= lim lim llog (cf)"(wo + €) = (cf)" (o) .

n—oo €—=0 N €

By using the chain rule of calculus, calculate A assuming that the iterates xg, z1, . . .
are described by the stationary distribution derived in lecture.



