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Assignment 2

Due date: Wednesday, March 6

Asymptotics of the distribution of field strength

In lecture we will derive the distribution of electric field strengths E produced by a
random distribution of equal point charges in a 3D material. Our solution will be
given in terms of the following integral:

R(a) =
1

2π2

∫
x sinx e−(x/a)

3/2

dx,

where a is a dimensionless parameter proportional to E. Because there is no closed-
form expression for this integral we use asymptotic analysis to study its behavior.
The first step, in general, is to express the integral in the canonical form

I(t) =

∫
C

f(z) etφ(z)dz,

where C is a suitable contour in the complex plane and we are interested in the limit
t→∞ so that the contour integral is dominated by the contribution at a saddle point
or endpoint. We see that R(a) is already of this form if we are interested in the
distribution for weak fields, or a→ 0. Your assignment is to study the opposite limit,
a→∞.

1. Make the change of variables (x/a)3/2 = z3 and express R(a) as the imaginary
part of an integral in the canonical form. What are the functions f and φ?

2. Sketch (by hand) level sets of both the real and imaginary parts of φ. The
original integration contour C was along the positive real axis with endpoint at
the origin. Modify C to take advantage of the saddle point at the origin and
thereby obtain the leading behavior of R(a) for large a.

Continued fractions

In lecture we will derive the formula

p(a) = log2

(
1 +

1

a(a+ 2)

)
(1)

for the probability of partial quotients a = 1, 2, 3, . . . in the continued fraction expan-
sion of a “random” number. Clearly there are exceptions, such as all the quadratic
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irrationals, whose partial quotients do not have this distribution. What about 3
√
2? In

the first part of this assignments you will design and run a computer program that
computes the partial quotients of 3

√
2 to test whether this number is “random” from

the continued fraction perspective. In the second part you will compute the Lypunov
exponent of the continued fraction process, a quantity that is directly related to the
entropy of the partial quotients.

(a) The continued fraction process is the iteration

xn+1 = cf(xn) =
1

xn
−
⌊
1

xn

⌋
,

where the second (floor operation) term is the partial quotient an. Here’s a method
for computing the partial quotients that only uses integer arithmetic. The trick is
to iteratively generate a sequence of polynomials p0(x), p1(x), . . . , all with integer
coefficients, and whose only real roots are the iterates x0, x1, . . . in the continued
fraction process starting with x0 =

3
√
2. For the first polynomial we can use

p0(x) = x3 − 2,

since its only real root is x0 =
3
√
2. To generate p1(x), p2(x), . . . we use the reflection

and translation transformations

R[p(x)] = x3 p

(
1

x

)
T[p(x)] = p(x+ 1).

Verify that these always produce cubic polynomials with integer coefficients and a
single real root. Describe how the continued fraction process can be simulated —
with only integer arithmetic — by combining these transformations. Explain why
the integer coefficients of the polynomials must be able to get arbitrarily large if x0 is
indeed “random”. Finally, write a program to generate the first 1000 partial quotients
of 3
√
2. Are the frequencies you find consistent with distribution (1)?

(b) The statement that the partial quotients of a particular number are distributed
according to (1) rests on the property of ergodicity. Think of the set of possible
starting values, x0, as defining an “ensemble” and the index n as a kind of “time”.
When ergodicity holds, ensemble averages equal time averages.

Ergodicity is clearly helped when (cf)n(x0) = xn depends sensitively on x0. A
standard measure of this sensitivity is the Lyapunov exponent:

λ = lim
n→∞

lim
ε→0

1

n
log

∣∣∣∣(cf)n(x0 + ε)− (cf)n(x0)

ε

∣∣∣∣ .
By using the chain rule of calculus, calculate λ assuming that the iterates x0, x1, . . .
are described by the stationary distribution derived in lecture.


