Assignment 6 Solutions

Electrical resistance between concentric cylinders
Since $\mathbf{E}=-\nabla \varphi$, we get

$$
\mathbf{E}=-\frac{A}{r} \hat{\mathbf{r}}
$$

for the given $\varphi(r)$. This is the electric field of a line charge, which has the same symmetry, and therefore satisfies $\nabla \cdot \mathbf{E}=0$ everywhere (except $r=0$), which covers our case because there is no charge in the region between the two cylinders. Though the constant A is still to be determined, from this \mathbf{E} we can find the current density:

$$
\mathbf{j}=(1 / \rho) \mathbf{E}=-\left(\frac{A}{\rho}\right) \frac{1}{r} \hat{\mathbf{r}} .
$$

Now consider a cylindrical surface \mathcal{S} of radius r and length L matching the length of the two conductors. The flux of current density through \mathcal{S} is the total current I flowing between the conductors:

$$
I=\oint_{\mathcal{S}} \mathbf{j} \cdot d \mathbf{a}
$$

Since there is no flux through the two ends of \mathcal{S}, we only need the area element $d \mathbf{a}=|d \mathbf{a}| \hat{\mathbf{r}}$ on the curved part of the surface, \mathcal{S}_{c}, for the flux integral:

$$
I=-\int_{\mathcal{S}_{c}}\left(\frac{A}{\rho}\right) \frac{1}{r}|d \mathbf{a}|=-\left(\frac{A}{\rho}\right) \frac{1}{r} \int_{\mathcal{S}_{c}}|d \mathbf{a}|=-\left(\frac{A}{\rho}\right) 2 \pi L .
$$

The last step follows from the fact that \mathcal{S}_{c} has area $2 \pi r L$. The difference of potentials gives us the value of A,

$$
V=\varphi(a)-\varphi(b)=A \log a-A \log b=A \log (a / b)=-A \log (b / a)
$$

where $A>0(V<0)$ corresponds to the outer conductor being at the higher potential and positive current flowing inward $(I<0)$. Solving for A and substituting into the equation for I we obtain

$$
I=\left(\frac{V}{\rho \log (b / a)}\right) 2 \pi L
$$

from which we get the resistance

$$
R=V / I=\frac{\rho \log (b / a)}{2 \pi L}
$$

This is consistent with the general relationship $R=\rho /$ length .

A compound resistor

- Find the ratio of electric fields in the two semiconductors, E_{1} / E_{2}, when a potential difference is applied between the ends of the compound resistor.
Since the same current (net charge per unit time) flows through both conductors,

$$
I_{1}=A j_{1}=I_{2}=A j_{2}
$$

and $j=E / \rho$ we get

$$
E_{1} / \rho_{1}=E_{2} / \rho_{2}
$$

or

$$
E_{1} / E_{2}=\rho_{1} / \rho_{2} .
$$

- Find the ratio of potential differences between the ends of the individual semiconductors, V_{1} / V_{2}, when a potential difference is applied between the ends of the compound resistor.
Since $V=E L$,

$$
\frac{V_{1}}{V_{2}}=\frac{E_{1} L_{1}}{E_{2} L_{2}}=\frac{\rho_{1} L_{1}}{\rho_{2} L_{2}},
$$

where we substituted the electric field ratio from above.

- Find the current I that flows along the compound resistor when the potential difference between its ends is V.
The total potential change on the compound resistor is

$$
V=V_{1}+V_{2}=E_{1} L_{1}+E_{2} L_{2} .
$$

Using the electric field ratio from above we can express this in terms of only E_{1} :

$$
\begin{equation*}
V=E_{1}\left(L_{1}+\left(\rho_{2} / \rho_{1}\right) L_{2}\right) . \tag{1}
\end{equation*}
$$

Using conductor 1 to define the common current I,

$$
I=A j_{1}=A E_{1} / \rho_{1},
$$

we use equation (1) to express E_{1} in terms of V and substitute into this equation:

$$
I=A\left(\frac{V}{L_{1}+\left(\rho_{2} / \rho_{1}\right) L_{2}}\right) \frac{1}{\rho_{1}} .
$$

We see that the resistance of the compound resistor,

$$
R=V / I=\rho_{1}\left(L_{1} / A\right)+\rho_{2}\left(L_{2} / A\right),
$$

is the "series" resistance.

- Explain why in general a surface charge density σ forms where the cylinders are joined and there is a nonzero potential V between the ends of the compound resistor. Calculate the value of σ.
Just from the fact that there is a different electric field on the two sides of the surface where the conductors make contact, there must be a surface charge density to account for the nonzero net flux of electric field at this surface. Using Gauss's law on a small cylindrical surface that straddles the surface, we obtain

$$
E_{2}-E_{1}=\sigma / \epsilon_{0}
$$

We can again express this in terms of just E_{1} using the electric field ratio:

$$
\left(\left(\rho_{2} / \rho_{1}\right)-1\right) E_{1}=\sigma / \epsilon_{0}
$$

Substituting the E_{1} from equation (1) this becomes

$$
\left(\left(\rho_{2} / \rho_{1}\right)-1\right)\left(\frac{V}{L_{1}+\left(\rho_{2} / \rho_{1}\right) L_{2}}\right)=\sigma / \epsilon_{0} .
$$

Finally, solving for σ we obtain

$$
\sigma=\epsilon_{0}\left(\frac{\rho_{2}-\rho_{1}}{\rho_{1} L_{1}+\rho_{2} L_{2}}\right) V .
$$

The surface charge density can be of either sign, depending on the sign of V (direction of the current) and which of the conductors has the greater resistivity.

