Assignment 5 Solutions

Easy evaluation of the electric energy density integral
Prove the identity

$$
\nabla \cdot\left(\mathbf{E}_{1} \varphi_{2}\right)=\left(\nabla \cdot \mathbf{E}_{1}\right) \varphi_{2}+\mathbf{E}_{1} \cdot \nabla \varphi_{2}
$$

Each of the three terms is itself the sum of three terms, one for each axis in three dimensions. Here are just the terms involving $\partial / \partial x$ and x-components of vectors:

$$
\frac{\partial}{\partial x}\left(E_{1 x} \varphi_{2}\right)=\frac{\partial E_{1 x}}{\partial x} \varphi_{2}+E_{1 x} \frac{\partial \varphi_{2}}{\partial x}
$$

But this is just the ordinary product rule of calculus. The same identity applies to the y and z counterparts. Summing the three product-rule identities gives the identity you were asked to prove.
Use the divergence theorem to prove that

$$
\int d^{3} \mathbf{r} \nabla \cdot\left(\mathbf{E}_{1} \varphi_{2}\right)=0
$$

By the divergence theorem,

$$
\int_{\mathcal{V}} d^{3} \mathbf{r} \nabla \cdot\left(\mathbf{E}_{1} \varphi_{2}\right)=\oint_{\mathcal{S}}\left(\mathbf{E}_{1} \varphi_{2}\right) \cdot d \mathbf{a}
$$

where \mathcal{S} is the closed surface that bounds the region \mathcal{V}. We are free to take \mathcal{V} to be a large sphere of radius R that encloses both point charges with center fixed relative to these charges. In the limit of large R the difference between the sphere center and the positions of the charges is unimportant and $\left|\mathbf{E}_{1}\right| \sim c / R^{2}$ and $\phi_{2} \sim c^{\prime} / R$, where c and c^{\prime} are constants, so that the integrand of the surface integral behaves as $1 / R^{3}$ for large R. Since the surface area of the sphere only grows as R^{2}, the surface integral decays as $1 / R^{3} \times R^{2}=1 / R$ and is zero in the limit of an infinite sphere (corresponding to the integral over \mathcal{V} being the integral over all space).

You are now left with evaluating the integral

$$
\int d^{3} \mathbf{r}\left(\nabla \cdot \mathbf{E}_{1}\right) \varphi_{2}
$$

You can evaluate this without doing any serious work. The divergence of the electric field produced by charge 1 evaluates to a simple distribution; express it in terms of the Dirac delta "function".

The source of the field \mathbf{E}_{1} is a point charge q_{1} located at \mathbf{r}_{1}, that is, the charge density

$$
\rho_{1}(\mathbf{r})=q_{1} \delta^{3}\left(\mathbf{r}-\mathbf{r}_{1}\right) .
$$

Since $\nabla \cdot \mathbf{E}_{1}=\rho_{1} / \epsilon_{0}$ (local Gauss law), we can rewrite the integral as

$$
\int d^{3} \mathbf{r}\left(\rho_{1}(\mathbf{r}) / \epsilon_{0}\right) \varphi_{2}(\mathbf{r})=\int d^{3} \mathbf{r} q_{1} \delta^{3}\left(\mathbf{r}-\mathbf{r}_{1}\right) \varphi_{2}(\mathbf{r}) / \epsilon_{0}
$$

Using the delta-function identity this evaluates to

$$
\left(q_{1} / \epsilon_{0}\right) \varphi_{2}\left(\mathbf{r}_{1}\right)=\frac{K}{\epsilon_{0}} \frac{q_{1} q_{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
$$

Your answer for U_{12} should equal the answer you got in assignment 2 the hard way.

$$
\begin{aligned}
U_{12} & =\epsilon_{0} \int d^{3} \mathbf{r} \mathbf{E}_{1}(\mathbf{r}) \cdot \mathbf{E}_{2}(\mathbf{r}) \\
& =-\epsilon_{0} \int d^{3} \mathbf{r} \mathbf{E}_{1}(\mathbf{r}) \cdot \nabla \varphi_{2}(\mathbf{r}) \\
& =\epsilon_{0} \int d^{3} \mathbf{r}\left(\nabla \cdot \mathbf{E}_{1}\right) \varphi_{2} \\
& =K \frac{q_{1} q_{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
\end{aligned}
$$

Point charge near the surface of a conductor
Keeping in mind the rules that apply to field lines near a conductor, make a drawing of the field lines in the $x-y$ plane (the 3D pattern is symmetric about the x-axis). If this reminds you of a field line drawing you've seen before, state which it was!

This resembles the field of a dipole in the region $x>0$. If we had a true dipole, there would also be a charge -q at the center of the dashed circle. By symmetry, the dipole field lines are perpendicular to the plane $x=0$, exactly as required at the surface of a conductor (the region $x<0$). In the case of a conductor, instead of a charge $-q$, the field lines terminate at the conductor because there is a negative charge density on its surface.
Compute the magnitude of this surface field, $E(r)$, as a function of the distance r from the x-axis. As a check, your answer should have the form

$$
E(r)=\frac{A}{\left(r^{2}+B\right)^{3 / 2}},
$$

where A and B are constants (to be determined by you).
The electric field produced by the two point charges, one real and the other fictitious, evaluated at $x=0$ (technically, just outside the conductor), and arbitrary y is

$$
\begin{aligned}
\mathbf{E} & =K q\left(\frac{-a \hat{\mathbf{x}}+y \hat{\mathbf{y}}}{\left(a^{2}+y^{2}\right)^{3 / 2}}-\frac{a \hat{\mathbf{x}}+y \hat{\mathbf{y}}}{\left(a^{2}+y^{2}\right)^{3 / 2}}\right) \\
& =K q \frac{-2 a \hat{\mathbf{x}}}{\left(a^{2}+y^{2}\right)^{3 / 2}} .
\end{aligned}
$$

This is perpendicular to the surface of the conductor (the $x=0$ plane) and has magnitude of the form given in the assignment with

$$
A=2 K q a, \quad B=a^{2} .
$$

Calculate $\sigma(r)$, using Gauss's law, as we did in lecture. Integrate this surface charge density over the entire plane $x=0$ to find out how much total charge resides on the surface of the conductor.
As shown in lecture, the electric field magnitude at the surface of a conductor and the surface charge density there are related as $E=\sigma / \epsilon_{0}$. The sign of σ is positive when the field lines point away from the conductor, so in this case σ is negative and has value

$$
\sigma(r)=-\epsilon_{0} E(r)=-\frac{q}{2 \pi} \frac{a}{\left(a^{2}+r^{2}\right)^{3 / 2}}
$$

since $\epsilon_{0} K=1 /(4 \pi)$. Integrating this density over the entire conductor surface,

$$
\int_{0}^{\infty}(2 \pi r d r) \sigma(r)=-q
$$

we see that the system (point charge $+q$ and surface charge) is neutral.
Calculate the electric force, magnitude and direction, experienced by the $+q$ charge using whichever source (real surface charge or fictitious point charge) is simpler for the task.
From the local perspective it is the electric field \mathbf{E} at the location of the $+q$ charge that is responsible for the force $\mathbf{F}=q \mathbf{E}$ on the charge. We know that \mathbf{E} is produced by the surface charges, but exactly the same \mathbf{E} (and force) would be produced by a $-q$ charge at $x=-a$ and no surface charge:

$$
\mathbf{F}=q\left(K \frac{(-q)}{(2 a)^{2}} \hat{\mathbf{x}}\right)=-K \frac{q^{2}}{4 a^{2}} \hat{\mathbf{x}} .
$$

