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Assignment 5

Due date: Friday, October 1

Easy evaluation of the electric energy density integral

In the second assignment you evaluated the integral of the electric energy density in
space produced by a pair of point charges. The calculation was quite involved, with
complications arising from working with vector fields in a cylindrical coordinate
system. This problem shows how the same integral can be evaluated much more
simply by working with the scalar electric potential function ϕ(r). It also reviews
the divergence theorem and the Dirac delta function.

The integral to be evaluated is

U12 = ε0

∫
d3r E1(r) · E2(r),

where E1 is the field of a point charge q1 at r1 and E2 is the field of a point charge q2
at r2. We rewrite this in terms of the electric potential function associated with E2 :

U12 = −ε0
∫
d3r E1(r) · ∇ϕ2(r)

ϕ2(r) =
Kq2
|r− r2|

.

We made the usual choice for the arbitrary constant in the definition of ϕ2, such that
this function vanishes at infinity.

Prove the identity
∇ · (E1ϕ2) = (∇ · E1)ϕ2 + E1 · ∇ϕ2

which applies in fact to the product of any vector field and scalar function (i.e. its
validity does not depend on specific properties of the electric field and potential).
Hint: Examine one component of the gradient at a time, say ∂/∂x, in all three terms
and observe that this is just the ordinary product rule of calculus.

After proving the identity replace the integrand in U12, one term in the identity, with
the other two terms.
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Use the divergence theorem to prove that∫
d3r ∇ · (E1ϕ2) = 0.

Hint: How does the vector field quantity in parentheses behave as you approach
infinity? Without doing any integral, can you argue the flux is zero through the
“surface at infinity”?

You are now left with evaluating the integral∫
d3r (∇ · E1)ϕ2.

You can evaluate this without doing any serious work. The divergence of the electric
field produced by charge 1 evaluates to a simple distribution; express it in terms of
the Dirac delta “function”.

The final step makes use of the following identity (f is an arbitrary scalar function):∫
d3r δ3(r− r1)f(r) = f(r1).

You can understand this identity as follows (there is actually nothing to prove): The
function δ3(r − r1) is defined so it has unit integral; all that is different here is that
it is being multiplied by a scalar function f(r). If this function were a constant you
would already know what to do. On the other hand, since the Dirac function is zero
except when r lies in a small neighborhood of r1, you may as well replace f(r) by
its value at r = r1 (thereby replacing f(r) by the constant f(r1)).

Use the above identity to evaluate the final integral. Your answer for U12 should equal
the answer you got in assignment 2 the hard way.

Point charge near the surface of a conductor

In this problem you will study the electric field produced by a point charge when
it is placed near the surface of a conductor, the charge density that develops on the
surface of the conductor, and the force experienced by the point charge as a result of
this surface charge. We will keep the geometry as simple as possible. The conductor
is the entire region x < 0; its surface is the plane x = 0. The point charge q > 0 is
placed on the positive x-axis at x = a.

Keeping in mind the rules that apply to field lines near a conductor, make a drawing
of the field lines in the x-y plane (the 3D pattern is symmetric about the x-axis). If
this reminds you of a field line drawing you’ve seen before, state which it was!

An electric field that has all the required properties in the region x > 0 can be
constructed by placing a “fictitious” charge −q on the x-axis at x = −a, and letting
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it together with the actual +q charge at x = +a be sources of the field (we ignore
what is going on in the region x < 0 for now). Using symmetry, show that the net
electric field right at the surface of the conductor, x = 0, is properly perpendicular to
the surface. Compute the magnitude of this surface field, E(r), as a function of the
distance r from the x-axis. As a check, your answer should have the form

E(r) =
A

(r2 +B)3/2
,

where A and B are constants (to be determined by you).

Now suppose the electric field really is zero inside the conductor, x < 0. In order
for it to abruptly jump to the non-zero value you found above at x = 0, there must
be some surface charge density σ(r). Calculate σ(r), using Gauss’s law, as we did in
lecture. Integrate this surface charge density over the entire plane x = 0 to find out
how much total charge resides on the surface of the conductor.

By introducing the surface charge the electric field is able to jump from a nonzero
value just outside the conductor to zero inside the conductor. Consequently, the +q
charge together with the surface charge account for the entire electric field, outside
and inside the conductor; there is no need for a fictitious −q charge inside the con-
ductor. The role of the fictitious charge was simply to help us work out the surface
charge. On the other hand, if we are mostly interested in the electric field in the
region outside the conductor, we can think of the fictitious charge as an alternative,
but equivalent, source. Calculate the electric force, magnitude and direction, expe-
rienced by the +q charge using whichever source (real surface charge or fictitious
point charge) is simpler for the task.


