## Assignment 3 Solutions

## Electrostatic energy of a crystal

Here are the first 6 approximations (in units of $U$ ), extending to ions at distance $3 a$ :

$$
\begin{aligned}
-2.000000 & =\frac{1}{2}\left(-\frac{4}{1}\right) \\
-0.585786 & =\frac{1}{2}\left(-\frac{4}{1}+\frac{4}{\sqrt{2}}\right) \\
0.414214 & =\frac{1}{2}\left(-\frac{4}{1}+\frac{4}{\sqrt{2}}+\frac{4}{2}\right) \\
-1.374641 & =\frac{1}{2}\left(-\frac{4}{1}+\frac{4}{\sqrt{2}}+\frac{4}{2}-\frac{8}{\sqrt{5}}\right) \\
-0.667534 & =\frac{1}{2}\left(-\frac{4}{1}+\frac{4}{\sqrt{2}}+\frac{4}{2}-\frac{8}{\sqrt{5}}+\frac{4}{\sqrt{8}}\right) \\
-1.334201 & =\frac{1}{2}\left(-\frac{4}{1}+\frac{4}{\sqrt{2}}+\frac{4}{2}-\frac{8}{\sqrt{5}}+\frac{4}{\sqrt{8}}-\frac{4}{3}\right)
\end{aligned}
$$

As you can see, convergence is very poor. Though negative energy (crystal stability) prevails, it seems hard to estimate the infinite crystal value even to within a factor of two.

Let's try the "molecule" approach:
The internal energy is a sum of six terms:

$$
U_{00} / U=-4+\frac{2}{\sqrt{2}}=-2.58579
$$

All molecule-pair terms are sums of $4 \times 4$ terms. Here is the first one:

$$
U_{20} / U=-2+\frac{2}{\sqrt{2}}+\frac{4}{2}-\frac{4}{\sqrt{5}}-\frac{2}{3}+\frac{2}{\sqrt{10}}=-0.408852
$$

It was easy to write a Mathematica function for computing these. Here are the first few beyond the first:

$$
\begin{aligned}
& U_{22} / U=+0.0912234 \\
& U_{40} / U=-0.0121214 \\
& U_{42} / U=+0.0028098
\end{aligned}
$$

Notice how rapidly these terms become small - the energy between electrically neutral objects (molecules). The sequence of approximations now looks like this:

$$
\begin{aligned}
-2.58579 & =U_{00} / U \\
-3.40349 & =\left(U_{00}+(4 / 2) U_{20}\right) / U \\
-3.22104 & =\left(U_{00}+(4 / 2) U_{20}+(4 / 2) U_{22}\right) / U \\
-3.24529 & =\left(U_{00}+(4 / 2) U_{20}+(4 / 2) U_{22}+(4 / 2) U_{40}\right) / U \\
-3.23405 & =\left(U_{00}+(4 / 2) U_{20}+(4 / 2) U_{22}+(4 / 2) U_{40}+(8 / 2) U_{42}\right) / U
\end{aligned}
$$

This is converging nicely, already better than a $1 \%$ estimate! Dividing by 4 to get the energy per ion:

$$
-0.808512 U
$$

This is what the earlier attempt tried (unsuccessfully) to find.
According to Wikipedia, the repeat distance ("lattice constant") in a 3D NaCl crystal is $5.64 \AA$, so the distance between ions is $a=5.64 / 2 \AA=2.82 \times 10^{-10} \mathrm{~m}$. Plugging in the physical constants,

$$
U=K \frac{e^{2}}{a}=8.2 \times 10^{-19} \mathrm{~J}
$$

One mole of NaCl has $2 N_{A}$ ions, where $N_{A}$ is Avogadro's number. Remembering to use -0.874 for the 3D sum instead of the -0.8085 we calculated earlier, the energy per mole of NaCl is

$$
-0.874\left(2 N_{A}\right) U=-8.6 \times 10^{5} \mathrm{~J} / \mathrm{mole}
$$

## Electrostatics in a spherical world

By symmetry, the electric field of a point charge at the north pole of sphere-world has the form

$$
\mathbf{E}=E(\theta) \hat{\theta},
$$

where $\hat{\theta}$ is the unit vector tangent to the line of longitude and directed toward increasing $\theta$ (the south pole). For the curve $\mathcal{C}$ of constant latitude, the "surface" element in Gauss's law is

$$
d \mathbf{a}=d \ell \hat{\theta}
$$

since $\hat{\theta}$ is the outward normal to $\mathcal{C}$ and the magnitude of $d \mathbf{a}$ is a line element $d \ell$ on the line of latitude. By spherical geometry the radius of the circle of constant latitude is $R \sin \theta$. The circumference of this circle is therefore

$$
\oint_{\mathcal{C}} d \ell=2 \pi R \sin \theta .
$$

By Gauss's law,

$$
\begin{aligned}
\oint_{\mathcal{C}} \mathbf{E} \cdot d \mathbf{a} & =E(\theta) \oint_{\mathcal{C}} d \ell=E(\theta) 2 \pi R \sin \theta \\
& =q / \epsilon^{\prime}
\end{aligned}
$$

From this we can solve for the magnitude of the electric field:

$$
E(\theta)=\frac{1}{2 \pi \epsilon^{\prime}} \frac{q}{R \sin \theta}
$$

The electric field diverges at $\theta=0$ as it should because there is a point source at the north pole. But notice that $E(\theta)$ also diverges at $\theta=\pi$ and the field lines there (with direction $\hat{\theta}$ ) are pointing toward the south pole. This shows we cannot have a point source at the north pole without a matching point sink (charge $-q$ ) at the south pole. Sphere-world is always charge neutral!

Without loss of generality we will place $q_{1}$ at the north pole $(\theta=0)$. The energy $U_{12}$ will then depend only on the latitude $(\theta)$ of $q_{2}$, since moving $q_{2}$ along a line of latitude involves no work ( $\mathbf{E}$ and the line element $d \ell \hat{\phi}$ are perpendicular). We therefore need consider only paths along a line of longitude, and we choose to start the path at $\theta=\pi / 2$, where $U_{12}$ is defined to be zero:

$$
U_{12}(\theta)-0=-\int_{\text {path }} \mathbf{F} \cdot d \ell \hat{\theta} .
$$

From the earlier electric field calculation we know

$$
\mathbf{F}=q_{2} \mathbf{E}=\frac{q_{2} q_{1}}{2 \pi \epsilon^{\prime} R \sin \theta} \hat{\theta}
$$

and the element of arc length (along the line of longitude) is

$$
d \ell=R d \theta
$$

Plugging these into the work integral we get

$$
\begin{aligned}
U_{12} & =-\frac{q_{2} q_{1}}{2 \pi \epsilon^{\prime}} \int_{\pi / 2}^{\theta} \frac{d \theta^{\prime}}{\sin \theta^{\prime}} \\
& =-\frac{q_{2} q_{1}}{2 \pi \epsilon^{\prime}} \log (\tan (\theta / 2))
\end{aligned}
$$



To understand this energy plot, remember that it describes four point charges: $q_{1}$ at the north pole, $-q_{1}$ at the south pole, $q_{2}$ at $\phi=0$ and $\theta$, and $-q_{2}$ at $\phi=\pi$ and $\pi-\theta$ (opposite $q_{2}$ on the sphere). When $q_{1}$ and $q_{2}$ have the same sign, and $\theta$ is close to zero, then two pairs of like charges are close together and the energy diverges positively. On the other hand, if $\theta$ is close to $\pi$, then two pairs of unlike charges are close together and the energy diverges negatively.

