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Assignment 2 Solutions

Electric energy density

The electric field not only confers locality to the nature of the electric force, but
locality to the origin of electric energy.

Starting from Coulomb’s force law and the work-energy theorem for conservative
forces, we obtained in lecture a formula for the energy of a collection of point
charges. This formula is non-local, i.e. it is not the sum of contributions of locally
defined quantities.

In this assignment you will learn how to compute the energy of a collection of point
charges just from the electric field they produce. The key idea is to construct a scalar
energy density from the electric field, E(r). Since the electric field is a vector, one
of the simplest local scalars we can construct is its dot product:

u(r) = K ′ E(r) · E(r) = K ′ |E(r)|2 .

This is the electric energy density; the constant K ′ is at this stage unknown. What
are the units of K ′?

Since (just units) E = KQ/L2 (Q = charge, L = length), and U = KQ2/L is
energy, we see that E2 = KU/L3 (again, just units), so K ′ should have units of 1/K
in order for K ′E2 to be an energy density (energy per volume).

Divergent energy

Your task is to show that this energy density, when integrated over all of space,
correctly reproduces the energy of a system of point charges which you already
know. First consider a system of two charges. Charge 1 produces an electric field
E(r; r1, q1), where r1 is its position and q1 the value of its charge. Similarly, charge
2 produces the field E(r; r2, q2). One of the first things you will have to confront is
the fact that the electric energy density of a point charge rises very steeply near the
charge and its integral over space actually diverges.

Explain, in quantitative terms, why the integral of u(r) diverges for the field of a
single point charge.

The volume element in spherical coordinates, for a spherically symmetric integrand
after integrating over angles, is 4πr2dr. Integrating between a distance r = rmin

from the charge and r =∞, we get

U =
∫ ∞
rmin

K ′
(Kq)2

r4
4πr2dr = 4πK ′K2q2

1

rmin

,

for the energy (stored in the electric field) for a charge q. This diverges as rmin → 0.
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Subtracting an infinite constant

The divergence of the electric field energy produced by point charges does not stand
in your way to compare field energies produced by systems of point charges when
their relative positions are changed. Say we have point charges at positions r1 and
r2. We define the energy of the system like this:

U12 = K ′
∫
d3r |E(r; r1, q1) + E(r; r2, q2)|2−K ′

∫
d3r |E(r; 0, q1) + E(r;∞, q2)|2 .

We have subtracted the integral of the energy density for the case when the two
charges are infinitely far apart (one at the origin, the other at ∞), as a convenient
point of reference.

Show that
U12 = K ′

∫
d3r 2E(r; r1, q1) · E(r; r2, q2).

Expanding the two | · · · |2 we get six terms. Two of these have the form

K ′
∫
d3r |E(r; rsource, q1)|2

differing only in the position of the source and a sign. They are therefore equal in
magnitude (identical instances of the divergent integral above) and cancel by virtue
of the sign. The same holds for the two terms involving only q2. We are left with two
terms proportional to q1q2. The term

K ′
∫
d3r 2E(r; 0, q1) · E(r;∞, q2)

is zero because there is no r (integration point) that is not infinitely far from at least
one of the charges (for which the electric field is zero). Thus only the U12 cross-term
remains.

The energy integrand

Place charge 1 at the origin and charge 2 at distance R on the positive z-axis. This is
the configuration for which you will compute U12.

Sketch or have a computer plot the integrand of the U12 integral in a plane that passes
through the z-axis, say for a pair of like charges. Where does it change sign? Though
the integrand still diverges, argue that the integral U12 is now finite.

Using

r− r1 = x x̂+ y ŷ + z ẑ

r− r2 = x x̂+ y ŷ + (z −R) ẑ
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we obtain1

U12 = 2K ′K2q1q2

∫
d3rf(r)

f(r) =
ρ2 + z(z −R)

(ρ2 + z2)3/2(ρ2 + (z −R)2)3/2

where ρ =
√
x2 + y2 is the distance to the z-axis. The function f(r) diverges at two

places on the z-axis (ρ = 0), at z = 0 and z = R (the positions of the two charges).
However, the divergence is different from what you saw earlier, for |E|2, because of
the numerator. Rewriting this as(

x2 + y2 + (z −R/2)2
)
− (R/2)2,

we see that the numerator is negative when the distance to the point (R/2)ẑ is less
than R/2 and positive otherwise. In other words, f(r) changes sign everywhere on
the surface of a sphere of radiusR/2 centered at (R/2)ẑ. This sphere passes through
both charges. As a result, “half” of the diverging behavior is positive and the other
half is negative at each of the charges. But it is not just “cancellation by sign” that
makes the integral finite. Consider the part of the integral near the charge at r = 0.
The spherical volume element centered on this charge, ignoring angles, goes as r2dr,
while the electric field magnitude from that charge goes as 1/r2. The electric field
from the other charge can be approximated as a constant in a small neighbotrhood
of r = 0. These facts combined show that the r-dependence of the integrand near
r = 0 is r2/r2 and does not diverge.

1We are using ρ instead of r for the distance from the z-axis and reserve r for the distance to the origin in
spherical coordinates.
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The double integral

Set up the U12 integral in cylindrical coordinates and evaluate the angular part of the
integral (for which the integrand is constant). You will end up with a double integral
over z and the distance ρ from the z-axis.

Since f(r) does not depend on the angle φ about the cylinder axis, the φ-integral
just gives a factor of 2π. Combining constants as

C = 2× 2πK ′K2q1q2,

we arrive at

U12 = C
∫ ∞
−∞

dz
∫ ∞
0

ρdρ
ρ2 + z(z −R)

(ρ2 + z2)3/2(ρ2 + (z −R)2)3/2
.

Computing the double integral

Perform the ρ-integral using the substitution t = ρ2 and the formula

∫ ∞
0

dt

2

A+ t

[(B + t)(C + t)]3/2
=

1 + A/
√
BC

B + C + 2
√
BC

.

You now have left an integral over z. Examine the integrand in each of the three
regions: z < 0, 0 < z < R, and R < z; it should greatly simplify in each region.

Doing the ρ integral first with the substitution t = ρ2, dt = 2ρdρ, we get an integral
of the form above with positive constants B and C. Remembering that

√
z2 = |z|

and
√
(z −R)2 = |z −R|, the ρ-integral evaluates to

1 + z(z −R)/|z(z −R)|
z2 + (z −R)2 + 2|z(z −R)|

.

When z satisfies 0 < z < R, |z(z−R)| = −z(z−R) and we see that the numerator
becomes 1− 1 = 0. In both of the other regions, z < 0 and z > R, we instead have
|z(z −R)| = z(z −R) and the expression above simplifies to

2

(2z −R)2
.

Finally, doing the z-integral we obtain∫ 0

−∞

2dz

(2z −R)2
+
∫ ∞
R

2dz

(2z −R)2
=

1

R
+

1

R
=

2

R
.
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Combining this with the constant C defined earlier, and remembering that R = r12
is the distance between the charges,

U12 = 8πK ′K2 q1q2
r12

.

Compare with the non-local formula

Confirm that your result for U12 agrees with the non-local, Coulomb-law derived
formula from lecture when the constant K ′ has a particular value.

Our energy density integral for U12 agrees with the work-integral from lecture with
the parameter value

K ′ =
1

8πK
.

Multiple point charges

Show that integrating the appropriately subtracted electric energy density for multiple
point charges always reduces to the case of pairs that you have worked out (and
therefore agrees with the energy formula given in lecture).

With multiple charges there will be pairs of integrals of +|E|2 and−|E|2 with source
at each of the point charges (these cancel), and integrals of 2E(r; qi, ri) ·E(r; qj, rj)
for all pairs of charges i and j — when located at their actual positions ri and rj —
as well as the same expression but with ri and rj replaced by positions infinitely far
apart. The latter pair-terms vanish while the former give the correct pair-energies
when integrated, as we worked out earlier for the case of just two charges.


