
Physics 2217, Fall 2021 1

Assignment 1 Solutions

The back-propagation algorithm

No doubt you have often been encouraged to use drawings as part of your solution
process, if only to define the symbols in your math. This continues to be true in 2217,
although this problem may be an exception.

The downside of drawings is that they may introduce assumptions or bias not present
in the actual problem. This happens in the world of professional physics, when a
particular iconography gets replicated over and over to the point where the underlying
assumptions are never challenged1.

In this problem one is tempted to render the neural network as layered, since that is
how nearly all networks are implemented in practice. But the problem states nothing
about layers, and indeed the back-propagation algorithm applies to a more general
class of networks. The only real constraint on the network is that variables have
unambiguous functional relationships, and the j → i notation (arrows on edges) is
our guide to those relationships. A variable that lives on some node is a function
of only those variables and parameters that lie on arrowed paths that end on that
variable (when moving in the direction of the arrows). Conversely, a variable on
some node, or weight parameter on some edge, affects (in a functional sense) only
those variables on arrowed paths leaving that variable or parameter (again, when
moving in the direction of the arrows). Since all arrowed paths lead to the output
nodes, and the loss function is a function of the x variables on those nodes, L is a
function of all the variables and parameters in the network.

With this mental picture of the functional relationships, and the equations

xi = f(yi), (1)

yi =
∑
j→i

xjwj→i, (2)

L =
1

2

∑
i∈O

(xi − x∗i )2, (3)

we can solve all the problems without having to make a single drawing!

1For an example, do a Google Image search for “glass energy landscape”.



Physics 2217, Fall 2021 2

1. Consider any edge j → i of the network. Show that

∂L
∂wj→i

=
∂L
∂yi

∂yi
∂wj→i

=
∂L
∂yi

xj. (4)

Consider any arrowed path starting from edge j → i that leads to the loss
function L. All these paths go through node i and the variable yi on that node.
Therefore any effect that wj→i can have on L is via the effect it has on yi. In
symbols,

L(wj→i, . . .) = L(yi(wj→i, . . .), . . .). (5)

Equation (4) follows from applying the chain rule to (5) and using (2) to evalu-
ate ∂yi/∂wj→i.

2. Consider the case where i is not an input node and show

∂L
∂yi

=
∂L
∂xi

f ′(yi), (6)

where f ′ is the derivative of the activation function.
How can yi affect the loss? From (1) we see that yi directly affects xi on the
same node, and then xi affects L via any arrowed path starting from node i
(and ending up at the loss function). Functionally,

L(yi, . . .) = L(xi(yi), . . .). (7)

Equation (6) follows from the single-variable chain rule and using (1) to eval-
uate dxi/dyi.

3. Now take a deep breath and think of all the ways that xi, where i is not an output
node, affects the loss to show

∂L
∂xi

=
∑
i→k

∂L
∂yk

∂yk
∂xi

(8)

=
∑
i→k

∂L
∂yk

wi→k . (9)

Note that the sum is over all the nodes k that receive input from the given node
i.
There can be multiple arrowed paths, starting at node i, whereby xi can affect

the loss. Use k1, k2, . . . to index the possible next nodes encountered, after
moving along a single edge from i. The value of xi affects yk1 , yk2 , . . . , and the
effect on L is via its dependence on these y values. Functionally,

L(xi, . . .) = L(yk1(xi, . . .), yk2(xi, . . .), . . .). (10)



Physics 2217, Fall 2021 3

We get (8) by applying the multi-variable chain rule to (10), where the sum over
the terms k1, k2, . . . is written with the notation

∑
i→k (all k which are joined

to i by an edge). Using (2) with an index change (i replaced by k and the sum
over j replaced by a sum over i) we can evaluate ∂yk/∂xi to arrive at (9).

4. Now combine (6) and (8) to obtain

∂L
∂yi

= f ′(yi)
∑
i→k

wi→k
∂L
∂yk

. (11)

Rewrite this as the recursion relation

zi = f ′(yi)
∑
i→k

wi→k zk (12)

for the quantity

zi =
∂L
∂yi

. (13)

These are just straightforward substitutions.

5. Explain why “back-propagation” describes the order in which the z variables
are computed over the network. Propagation starts at the output nodes. Find a
formula for the starting values, {zk : k ∈ O}, using the loss function (3) (which
you have not used up to now).
Contrast (12) with the forward-propagation equation (2). In forward-propagation
the value at a node i is given as a sum over edges with the arrows directed into
i, while in (12) the sum is over edges with arrows directed away from i. Unlike
forward-propagation, which starts at the input nodes and moves toward the out-
put nodes and the loss function, the direction is reversed in back-propagation.
To see how back-propagation starts, rewrite the loss function (3) using (1) to
express it in terms of y variables:

L =
1

2

∑
i∈O

(f(yi)− x∗i )2. (14)

Using this we can directly evaluate the zi for the special case i ∈ O:

zi =
∂L
∂yi

= (f(yi)− x∗i )f ′(yi) = (xi − x∗i )f ′(yi). (15)

We see that the z values correspond to errors, as they are proportional to the
difference between the outputs computed by the network (xi) and the target
values given by the training data (x∗i ). If all the errors at the output nodes are
zero, then all the back-propagated z values will also be zero.



Physics 2217, Fall 2021 4

6. Once all the z’s are computed by back-propagation, the gradient of the loss, by
(4), is simply

∂L
∂wj→i

= xjzi . (16)

Explain why “taking a step in the downhill gradient direction” means making
the parameter changes

wj→i → wj→i − η xjzi , (17)

where η > 0 is the step size or “learning rate”.
Recall what taking a downhill gradient step would be for a function of three

arguments, F (wx, wy, wz):

wx → wx − η
∂F

∂wx

wy → wy − η
∂F

∂wy

wz → wz − η
∂F

∂wz

.

In a neural network there are many morew’s (one for each edge of the network),
but the formulas are otherwise identical.


