
Physics 2217, Fall 2021 1

Assignment 1

Due date: Friday, September 3

The back-propagation algorithm

This morning, when you asked

Alexa, when is the 2217 homework due?

chances are your question was parsed, interpreted, etc. by neural networks that were
fine-tuned with respect to millions of parameters. Only something of that complexity
has any hope of covering the diversity of human voice, pronunciation, vocabulary,
grammar, etc. that “Alexa” confronts from one user to another. Fine-tuning that
many parameters seems like a nightmare — how is it done?

Fortunately for us, the creators of the enabling algorithm1 for fine-tuning (neural
network training), called back-propagation, had a good working knowledge of the
chain rule of multi-variable calculus, perhaps as a result of its repeated appearance
in their undergraduate E&M course. In this exercise you derive the back-propagation
rule using only the tools of calculus. No familiarity with neural networks is assumed.

First let’s review how the outputs of a neural network are computed from the inputs
— the act of forward propagation. We’ll write the output variables compactly as
{xi : i ∈ O}, where indices i label nodes of the network, a subset O of which are the
output nodes. If the network will be used for classifying images into two types (cat
vs. dog), the network would have two output nodes.

The variable xi is the output of a neuron whose input is the variable yi. We write the
neuron input-output relationship

xi = f(yi), (1)

where f is called the neuron’s activation function. For simplicity, all neurons in our
network have the same activation function f .

The neuron input, yi, is a linear function of the outputs of other neurons. We write
the relationship as

yi =
∑
j→i

xjwj→i. (2)

The parameter wj→i gives the “weight” whereby the neuron output xj contributes
to yi, and it is these parameters that get fine-tuned when the network is trained. If

1Rumelhart, Hinton & Williams (1985) Learning internal representations by error propagation



Physics 2217, Fall 2021 2

the summation symbol seems strange, think of it as a sum over all nodes j that are
connected by a network edge j → i to the given node i.

Forward propagation in the network is defined recursively by equations (1) and (2).
We start with given values {xj : j ∈ I} on a set I of input nodes (say holding
the pixel grayscale values of an image). By (2) these are summed with weights and
forward-propagated to another set of nodes where they become inputs to neurons, yi.
The activation functions (1) then produce neuron outputs which are then forward-
propagated further, etc. until we arrive at the output nodes.

A training item is a pair {x∗i : i ∈ I}, {x∗i : i ∈ O}, where the input-node values
are the image pixels of a pet, and the two output-node values are {1, 0} for cat, or
{0, 1} for dog. Training a neural network is all about modifying the weights wj→i on
the network edges so that the correct classification, {1, 0} vs. {0, 1}, appears on the
output nodes when forward-propagating any image in the training set.

Suppose we are at a point in training where the weights are not yet correct. We have
just forward-propagated the inputs of one item from the training set, {x∗i : i ∈ I}
and the values we find on the output nodes, {xi : i ∈ O}, do not match what we are
given in the training item, {x∗i : i ∈ O}. This is where calculus enters the picture. A
“soft” way to encourage the network to give the correct output is to find weights that
minimize the loss function

L =
1

2

∑
i∈O

(xi − x∗i )2. (3)

Only if the actual output values xi exactly match the target output values x∗i will
the loss be zero. A reasonable strategy for minimizing L, hopefully all the way to
zero, is to compute the gradient of L with respect to all the weight parameters and
take steps in the “downhill” direction. The efficient calculation of the gradient is the
back-propagation algorithm. We have broken the derivation into small steps below.

1. Consider any edge j → i of the network. Show that

∂L
∂wj→i

=
∂L
∂yi

∂yi
∂wj→i

=
∂L
∂yi

xj. (4)

Hint: Consider how the value of wj→i affects variables in the forward direction
(leading to the output nodes where the loss is defined).

2. Consider the case where i is not an input node and show

∂L
∂yi

=
∂L
∂xi

f ′(yi), (5)

where f ′ is the derivative of the activation function.



Physics 2217, Fall 2021 3

3. Now take a deep breath and think of all the ways that xi, where i is not an output
node, affects the loss to show

∂L
∂xi

=
∑
i→k

∂L
∂yk

∂yk
∂xi

(6)

=
∑
i→k

∂L
∂yk

wi→k . (7)

Note that the sum is over all the nodes k that receive input from the given node
i.

4. Now combine (5) and (7) to obtain

∂L
∂yi

= f ′(yi)
∑
i→k

wi→k
∂L
∂yk

. (8)

Rewrite this as the recursion relation

zi = f ′(yi)
∑
i→k

wi→k zk (9)

for the quantity

zi =
∂L
∂yi

. (10)

5. Explain why “back-propagation” describes the order in which the z variables
are computed over the network. Propagation starts at the output nodes. Find a
formula for the starting values, {zk : k ∈ O}, using the loss function (3) (which
you have not used up to now).

6. Once all the z’s are computed by back-propagation, the gradient of the loss, by
(4), is simply

∂L
∂wj→i

= xjzi . (11)

Explain why “taking a step in the downhill gradient direction” means making
the parameter changes

wj→i → wj→i − η xjzi , (12)

where η > 0 is the step size or “learning rate”.


