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The Hadamard phase of orthogonal matrices: solutions

These and future solutions are very concise but try to fully address all the content
in the questions. Use office hours if you need more detail.

1. An n× n Hadamard matrix H has only ±1 elements and orthogonal rows.
Prove that the columns are also orthogonal. Hint: Relate the transpose to
the inverse and the use the equality of right/left inverses.

Solution: Since the orthogonal matrices form a group, for any element U
we have UU−1 = U−1U = 1. The statement “U has orthogonal rows” is
the matrix equation UUT = 1. This identifies UT as U−1, and by the first
remark we know UTU = 1, that is, the columns are orthogonal.

2. Write down examples of 1 × 1 and 2 × 2 Hadamard matrices. Show that
all higher n × n Hadamard matrices must have n divisible by 4. Hint: By
multiplying rows by−1, as necessary, you can arrange to have all rows start
with + + +, + + −, + − +, or + − −. Say there are n1, . . . , n4 rows
with those starts. Now use orthogonality of the first three columns to find
relations among these integers.

Solution: [
1
][

1 1
1 −1

]
For n ≥ 3, the total row count, and the three orthogonalities of the first three
columns, give us the following four equations:

n1 + n2 + n3 + n4 = n

n1 + n2 − n3 − n4 = 0

n1 − n2 + n3 − n4 = 0

n1 − n2 − n3 + n4 = 0.

Add these to get 4n1 = n, so n is a multiple of 4.
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3. Go to sequence A206711 of OEIS to get counts of Hadamard matrices up
to n = 32. By analyzing these numbers, speculate about the entropy of
Hadamard matrices. You might want to first factor out the symmetry group
(flipping the sign of any row or column, or any row/column permutation,
gives another Hadamard). Entropy in thermodynamics is extensive, but in
this case it’s not clear what takes the place of “volume” — is it n or n2, or
something else? There’s no “correct” answer to this problem, its aim is just
to get you thinking.

“Solution”: OEIS A206711 gives the counts for orders 4, . . . , 32 :

{A4, A8, . . .} = {768, 4954521600, . . .}.

The best hint of extensive entropy I found was by ignoring the symmetry
group and having “volume” scale as n1.6:

Note that log |Gn| ∼ 2n log n, where |Gn| is the order of the symmetry
group, would be a subdominant correction.
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4. By rescaling, H → H/
√
n, we turn H into a standard orthogonal matrix

(rotation matrix). This is the normalization we will be working with from
now on. The 2×2 case is the “Hadamard gate” of quantum computing. Our
focus now shifts from the discrete set of Hadamard matrices to probability
distributions on the continuous group of orthogonal matrices. We will use
the symbol U for elements of the group, and define the Hamiltonian

Hn(U) = −
√
n

n∑
i=1

n∑
j=1

|Uij|α,

where α > 0 is a parameter. Note that Hn(U) is a constant (trivial) for
α = 2. Unless stated otherwise, we will usually take α = 1. From a
computational perspective this is the least expensive way of having a cusp at
zero (incentivizing matrix elements to select a sign). Prove that the ground
states ofHn, for α < 2, are Hadamard matrices for those nwhere Hadamard
matrices exist.

Solution: This is a property of the geometry of p-norms:

‖x‖p = (|x1|p + · · ·+ |xm|p)1/p.

In the positive orthant the constant-norm surfaces are spheres for p = 2
that become flat planes at p = 1 and concave surfaces for p < 1. The
smallest constant-p-norm surface, for p < 2, that touches the constant 2-
norm surface, does so when

|x1| = |x2| = · · · = |xm|. (1)

The orthogonal matrices lie on a 2-norm surface in dimension m = n2.
By property (1), the p-norm, for p < 2, is maximized when all the matrix
elements have the same magnitude, that is, when the orthogonal matrix is
Hadamard.
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5. Find a ground state forH3 with α = 1.

Solution: I used a local minimizer in Mathematica, and many random start-
ing points, and always obtained

1

3

 −1 2 2
2 −1 2
2 2 −1


or a symmetry related matrix. That’s not a proof but compelling evidence
that this is the unique solution for n = 3. A proper proof is probably quite
involved.

6. We will study the Gibbs probability density

exp (−βHn(U))

and discover there is a low temperature Hadamard phase. This density is
defined over the entire group and we use the uniform measure on the group.
We will use the Metropolis-Hastings method to sample the distribution of
orthogonal matrices and study their phase behavior. The part in these com-
putations that dominates the work/time is the elementary Markov-chain up-
date, U → U ′. To generate updates we will use Givens rotations, applied
to pairs of rows or columns, by angle θ. Write a well optimized piece of
code in a low-level language that implements Givens rotations. In addition
to creating U ′ efficiently, the code should also be efficient in computing the
corresponding change in Hn. Your code does not need to run by itself, that
is, you do not need to declare variables and allocate memory. In a future
assignment you will see to these details and wrap your ”Markov chain en-
gine” in a form that can be called in the language of your choice (including
python).
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Solution:

void rowrot(int i,int j,double a)
{
eold=0.;
for(k=0;k<n;++k)

{
u[k]=h[i][k];
v[k]=h[j][k];

eold+=-fabs(u[k])-fabs(v[k]);
}

c=cos(a);
s=sin(a);

enew=0.;
for(k=0;k<n;++k)

{
h[i][k]=c*u[k]+s*v[k];
h[j][k]=-s*u[k]+c*v[k];

enew+=-fabs(h[i][k])-fabs(h[j][k]);
}

if(exp(-beta*(enew-eold))>urand())
{
energy+=enew-eold;
accept++;
}

else
for(k=0;k<n;++k)
{
h[i][k]=u[k];
h[j][k]=v[k];
}

}


