Particle position distribution in a 3D potential

The probability density p(r) is proportional to the number of microstates at r. This is given by the
number of momentum microstates at that position, which is the volume of a spherical shell of
constant energy divided by the volume of one momentum microstate 6p,6p, 6p,. In lecture it was
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p(r) = C /K(r),where C is a normalization constant. The kinetic energy is K = E — U(r), so

shown that the volume of this shell is 4mvV2mKmdE, so the number of microstates is

p(r) = C\JE — U(r). From the normalization condition, we have
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This finally gives
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Tracer particle analysis of soft billiards

The time to cross the circular region at a vertical distance y from the center is simply the length of
. .. Length of chord aty
the chord at that height divided by the speed, so t;(y) = . From the Pythagorean
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theorem, half the length of the chord is /72 — y?, so the length of the chord is 2,/7? — y2 . This
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gives t,(y) =
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o f_r 2,/r? —y2dy.The integral is the area of a circle, so
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The time is, as before, the length of the chord divided by the speed. The length of half the chord is
r cos(6,), for —g <6, < g since outside this angle range, the particles are reflected and do not
enter the circular region, and therefore the chord length is 0. The total length of the chord is

2r cos(0,) = 2r \/m Using v, sin(6,) = v, sin(6,), Schnell’s law, we have sin(6,) =
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%sin(Gl), so the length of the chord is 2r \[1 — (U—) sin?(6,). Note that the condition —g <6, < g
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implies —1 < %sin(@l) <1,or —Z—Z < sin(6,) < % From the definition of the sine function, we see
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sin(8,) = % so the length of the chord is 2r |1 — (U—l) (%) for —Z—z < % < % orly| < Z—zr, and 0
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otherwise. The time is then



And the total time is
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Changing variablestou = %y, du = %dy, this becomes
2 2

T
T, LN W SR L. =T.

V1J_+ V1
Monoatomic and diatomic gases in thermal contact

1. Forthe monoatomic gas we can simply repeat the calculation in lecture and obtain
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2. TheentropyisS; = kgIn(Q(Vy, Ey)) = ky ln( VMg _1) = kp (N In(vy) + Z2In(Ey) ) +
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C,, where we have used Tl -1= 71
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3. Thetemperatureis givenby Ty = 557 = 557 = :
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4. The position microstates are the same, but now the energy is E, = (Zl 1le + pjz,l- +

p%) + = — (ZNZ L%; + L2;). In each of the p dimensions the “radius” of the hypersphere shell

isR = ,/2m,E, and in each L dimensionitis /2IE,. The volume of the hypersphere (hyper-
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ellipse actually) is then proportional to / E, 2, so the volume of the hypershell is
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5. TheentropyisS; = kgIn(Q(Vy, E;)) = kg 1n< n2E? _1> = kp (N2 In(Vy) + Z2In(E,) ) +

C,.
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6. ThetemperatureisT, = 5 = ——— = .
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7. When placed in thermal contact, then we have T} ., = T3 yew Which means
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8. AE is proportionalto (T, — T;), which implies it is positive for T, > T;, consistent with heat

flowing from hot to cold.



