
Particle position distribution in a 3D potential 

 

The probability density 𝜌(𝒓) is proportional to the number of microstates at 𝒓. This is given by the 
number of momentum microstates at that position, which is the volume of a spherical shell of 
constant energy divided by the volume of one momentum microstate 𝛿𝑝𝑥𝛿𝑝𝑦𝛿𝑝𝑧. In lecture it was 

shown that the volume of this shell is 4𝜋√2𝑚𝐾𝑚𝛿𝐸, so the number of microstates is 4𝜋𝑚√2𝑚𝐾𝛿𝐸

𝛿𝑝𝑥𝛿𝑝𝑦𝛿𝑝𝑧
, so 

𝜌(𝒓) = 𝐶 √𝐾(𝒓), where 𝐶 is a normalization constant. The kinetic energy is 𝐾 = 𝐸 − 𝑈(𝒓), so 

𝜌(𝒓) = 𝐶√𝐸 − 𝑈(𝒓). From the normalization condition, we have 

∫ 𝐶√𝐸 − 𝑈(𝒓)𝑑3𝒓 = 1 → 𝐶 =
1

∫ √𝐸 − 𝑈(𝒓)𝑑3𝒓
. 

This finally gives 

𝜌(𝒓) =
√𝐸 − 𝑈(𝒓)

∫ √𝐸 − 𝑈(𝒓)𝑑3𝒓
. 

Tracer particle analysis of soft billiards 

The time to cross the circular region at a vertical distance 𝑦 from the center is simply the length of 

the chord at that height divided by the speed, so 𝑡1(𝑦) =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐ℎ𝑜𝑟𝑑 𝑎𝑡 𝑦

𝑣1
. From the Pythagorean 

theorem, half the length of the chord is √𝑟2 − 𝑦2, so the length of the chord is 2√𝑟2 − 𝑦2 . This 

gives 𝑡1(𝑦) =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐ℎ𝑜𝑟𝑑 𝑎𝑡 𝑦

𝑣1
=

2√𝑟2−𝑦2

𝑣1
. The total time is then 𝑇1 = ∫ 𝑡1(𝑦)𝜌𝑑𝑦

𝑟

−𝑟
=

𝜌

𝑣1
∫ 2√𝑟2 − 𝑦2𝑑𝑦

𝑟

−𝑟
. The integral is the area of a circle, so 

𝑇1 =
𝜌

𝑣1
𝜋𝑟2. 

The time is, as before, the length of the chord divided by the speed. The length of half the chord is 
𝑟 cos(𝜃2), for − 𝜋

2
< 𝜃2 <

𝜋

2
, since outside this angle range, the particles are reflected and do not 

enter the circular region, and therefore the chord length is 0. The total length of the chord is 

2𝑟 cos(𝜃2) = 2𝑟 √1 − sin2(𝜃2). Using 𝑣1 sin(𝜃1) = 𝑣2 sin(𝜃2), Schnell’s law, we have sin(𝜃2) =

𝑣1

𝑣2
sin(𝜃1), so the length of the chord is 2𝑟 √1 − (

𝑣1

𝑣2
)

2
sin2(𝜃1). Note that the condition − 𝜋

2
≤ 𝜃2 ≤

𝜋

2
 

implies −1 <
𝑣1

𝑣2
sin(𝜃1) < 1, or − 𝑣2

𝑣1
< sin(𝜃1) <

𝑣2

𝑣1
. From the definition of the sine function, we see 

sin(𝜃1) =
𝑦

𝑟
, so the length of the chord is 2𝑟 √1 − (

𝑣1

𝑣2
)

2
(

𝑦

𝑟
)

2
 for − 𝑣2

𝑣1
<

𝑦

𝑟
<

𝑣2

𝑣1
, or |𝑦| <

𝑣2

𝑣1
𝑟, and 0 

otherwise. The time is then 

𝑡2(𝑦) =
2𝑟

𝑣2
 √1 − (

𝑣1

𝑣2
)

2

(
𝑦

𝑟
)

2

, |𝑦| <
𝑣2

𝑣1
𝑟 



And the total time is  

𝑇2 =
2𝑟

𝑣2
𝜌 ∫ √1 − (

𝑣1

𝑣2
)

2

(
𝑦

𝑟
)

2

𝑑𝑦

𝑣2𝑟
𝑣1

−
𝑣2𝑟
𝑣1

=
𝜌

𝑣2
∫ 2√𝑟2 − (

𝑣1

𝑣2
)

2

𝑦2𝑑𝑦

𝑣2𝑟
𝑣1

−
𝑣2𝑟
𝑣1

.  

Changing variables to 𝑢 =  
𝑣1

𝑣2
𝑦, 𝑑𝑢 =

𝑣1

𝑣2
𝑑𝑦, this becomes 

𝑇2 =
𝜌

𝑣1
∫ 2√𝑟2 − 𝑢2𝑑𝑢

𝑟

−𝑟

=
𝜌

𝑣1
𝜋𝑟2 = 𝑇1. 

Monoatomic and diatomic gases in thermal contact 

1. For the monoatomic gas we can simply repeat the calculation in lecture and obtain 

Ω(𝑉1, 𝐸1) ∝ 𝑉1
𝑁1𝐸1

3𝑁1
2

−1
. 

2. The entropy is 𝑆1 =  𝑘𝐵 ln(𝛺(𝑉1, 𝐸1)) = 𝑘𝐵 ln (𝑉1
𝑁1𝐸1

3𝑁1
2

−1
) = 𝑘𝐵 (𝑁1 ln(𝑉1) +

3𝑁1

2
ln(𝐸1)) +

𝐶1, where we have used 3𝑁1

2
− 1 ≈

3𝑁1

2
. 

3. The temperature is given by 𝑇1 =
1

𝑑𝑆1
𝑑𝐸1

=
1

3𝑁1
2

𝑘𝐵
𝐸1

=
2𝐸1

3𝑁1𝑘𝐵
. 

4. The position microstates are the same, but now the energy is 𝐸2 =
1

2𝑚2
(∑ 𝑝𝑥𝑖

2 + 𝑝𝑦𝑖
2 +

𝑁2
𝑖=1

𝑝𝑧𝑖
2 ) +

1

2𝐼
(∑ 𝐿𝑥𝑖

2 + 𝐿𝑦𝑖
2𝑁2

𝑖=1 ). In each of the 𝑝 dimensions the “radius” of the hypersphere shell 

is 𝑅 = √2𝑚2𝐸2 and in each 𝐿 dimension it is √2𝐼𝐸2. The volume of the hypersphere (hyper-

ellipse actually) is then proportional to √𝐸2

5𝑁2
, so the volume of the hypershell is 

Ω(𝑉2, 𝐸2) ∝ 𝑉2
𝑁2𝐸2

5𝑁2
2

−1
≈ 𝑉2

𝑁2𝐸2

5𝑁2
2 . 

5. The entropy is 𝑆1 =  𝑘𝐵 ln(𝛺(𝑉2, 𝐸2)) = 𝑘𝐵 ln (𝑉2
𝑁2𝐸2

3𝑁2
2

−1
) = 𝑘𝐵 (𝑁2 ln(𝑉2) +

5𝑁2

2
ln(𝐸2)) +

𝐶2. 

6. The temperature is 𝑇2 =
1

𝑑𝑆2
𝑑𝐸2

=
1

5𝑁2
2

𝑘𝐵
𝐸2

=
2𝐸2

5𝑁2𝑘𝐵
. 

7. When placed in thermal contact, then we have 𝑇1,𝑛𝑒𝑤 = 𝑇2,𝑛𝑒𝑤 which means 
2(𝐸1 + Δ𝐸)

3𝑁1𝑘𝐵
=

2(𝐸2 − Δ𝐸)

5𝑁2𝑘𝐵
 

𝑇1 +
2Δ𝐸

3𝑁1𝑘𝐵
= 𝑇2 −

2Δ𝐸

5𝑁2𝑘𝐵
 

Δ𝐸 =
𝑘𝐵(𝑇2 − 𝑇1)

2 (
1

3𝑁1
+

1
5𝑁2

)
. 

8. Δ𝐸 is proportional to (𝑇2 − 𝑇1), which implies it is positive for 𝑇2 > 𝑇1, consistent with heat 
flowing from hot to cold. 


