Euler's partial derivative product identity

Here's an identity involving partial derivatives that comes up in the first-principles derivation of the ideal gas law:

$$
\begin{equation*}
\left.\left.\left.\frac{\partial x}{\partial y}\right|_{z} \frac{\partial z}{\partial x}\right|_{y} \frac{\partial y}{\partial z}\right|_{x}=-1 \tag{1}
\end{equation*}
$$

Notice the cyclic symmetry of the symbols: $x \rightarrow y \rightarrow z \rightarrow x$. These notes are meant to help you understand what the identity means, and how it is derived using the math you learned in multi-variable calculus and linear algebra. Together we can lament the fact that this identity is left out of the standard curriculum, and that its Wikipedia page is terrible.

A symmetrical way to express the fact that any two of a set of three variables determines the third, is to say there exists a function of three variables f such that

$$
\begin{equation*}
f(x, y, z)=0 \tag{2}
\end{equation*}
$$

defines that relationship. For this to be a useful characterization at more than a single point (x, y, z), the set defined by equation (2) should be a smooth surface, and that implies the gradient of f, the vector

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

is never zero when evaluated at points of the surface. This is because the space orthogonal to ∇f defines the tangent plane to the surface.

The statement that x is determined by y and z is made more explicit by writing (2) in the form

$$
\begin{equation*}
f(x(y, z), y, z)=0 \tag{3}
\end{equation*}
$$

which defines x as a function of the two independent variables y and z. The analogous statements for y and z are

$$
\begin{align*}
& f(x, y(z, x), z)=0 \tag{4}\\
& f(x, y, z(x, y))=0 \tag{5}
\end{align*}
$$

We get Euler's identity by taking partial derivatives. Taking the partial derivative of (3) with respect to y and using the chain rule, we obtain

$$
\begin{equation*}
\frac{\partial f}{\partial x}\left(\left.\frac{\partial x}{\partial y}\right|_{z}\right)+\frac{\partial f}{\partial y}=0 \tag{6}
\end{equation*}
$$

The $\left.\right|_{z}$ reminds us that z is kept constant as we take the partial derivative of $x(y, z)$ with respect to y. We do not need this kind of reminder in the case of derivatives of f if we understand that $\partial f / \partial x$ means "take the derivative of the first argument of f ".

Continuing cyclically, partial derivative of (4) with respect to z, and partial derivative of (5) with respect to x, we get two cyclically related equations:

$$
\begin{align*}
\frac{\partial f}{\partial y}\left(\left.\frac{\partial y}{\partial z}\right|_{x}\right)+\frac{\partial f}{\partial z} & =0 \tag{7}\\
\frac{\partial f}{\partial z}\left(\left.\frac{\partial z}{\partial x}\right|_{y}\right)+\frac{\partial f}{\partial x} & =0 \tag{8}
\end{align*}
$$

Equations (6), (7) and (8) can be written compactly as a single matrix equation,

$$
\begin{equation*}
\nabla f \cdot \mathbf{E}=0 \tag{9}
\end{equation*}
$$

where ∇f is the row vector of partial derivatives, and

$$
\mathbf{E}=\left[\begin{array}{ccc}
\left.\frac{\partial x}{\partial y}\right|_{z} & 0 & 1 \tag{10}\\
1 & \frac{\partial y}{\partial z} & \left.\right|_{x} \\
0 & 1 & \left.\frac{\partial z}{\partial x}\right|_{y}
\end{array}\right]
$$

is the "Euler matrix." As argued earlier, ∇f is not the zero vector, so that equation (9) implies the the Euler matrix does not have full rank (it has a nontrivial null space). But that implies the determinant of \mathbf{E} must be zero. Working out the determinant and setting it to zero we obtain the identity (1).

