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Charged particle motion from the action principle
In this problem we treat the electromagnetic field as given (produced by an extrenal

agent) and study its effect on the motion of a relativistic particle of mass m and charge q,
The converse, or electromagnetic field produced by a given charged-particle world line, gets
equal treatment in the second problem.

So as to not confuse a general event x in space-time with the particle world-line, we
use the notation ζ(t) for the latter, where t is an arbitrary parameter (not necessarily time).
Consider the following definition of the 4-current density in space-time associated with the
particle:

Jα(x) = q

∫
(Ldt)uα(t)δ4(x− ζ(t)), (1.1)

where

dτ = Ldt =

√
ζ̇αζ̇αdt (1.2)

is the proper-time element and uα = ζ̇α/L is the 4-velocity.

1. Confirm that this geometrical definition mathces the usual definition of the 4-current
density by choosing time t = x0 as the arbitrary parameter and explicitly evaluating
the integral. Specifically, show that

J0(t,x) = ρ(t,x) = qδ3(x− ζ(t))

J(t,x) = qv(t)δ3(x− ζ(t)). (1.3)

Worldline given by ζ(t), t is some parameter. By choosing this parameter to be
t = ζ0,

dτ =

√
(ζ̇0)2 − ζ̇iζ̇idt =

√
1− (~̇ζ)2dt

ζ̇0 = dζ0/dt = 1 ~̇ζ = ~v (1.4)
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J0(t,x) = q

∫
dt(Lu0)dtδ(x0 − t)δ3(x− ~ζ(t)) =

q

∫
dt(t− x0)δ3(x− ~ζ(t)) = qδ3(x− ~ζ(t)) (1.5)

~J = q

∫
dt(L~u)dtδ(x0 − t)δ3(x− ~ζ(t))

q

∫
~vδ(x0 − t)δ3(x− ~ζ(t)) = q~vδ3(x− ~ζ(t)) (1.6)

2. Return to the integral expression for Jα(x) without the specialization t = time.
Show that

Sint[ζ] =

∫
d4xJα(x)Aα(x) = q

∫
dtζ̇α(t)Aα(ζ(t)), (1.7)

Here Sint is the term in the action that couples the particle to the electromagnetic field.

By direct substitution of 4-current, we find

Sint[ζ] = q

∫
d4x

∫
(Ldt)uα(t)δ4(x− ζ(t))Aα(x)

= q

∫
dt(ζ̇α)

∫
d4xδ4(x− ζ(t))Aα(x)Aα(x) = q

∫
dtζ̇α(t)Aα(ζ(t)) (1.8)

3. Obtain the equations of motion for the particle from the combined action,

S[ζ] = Sfree[ζ] + Sint[ζ], (1.9)

where

Sfree[ζ] = m

∫
Ldt (1.10)

is the action of the free particle (derived in lecture) with a particular choice of scale
factor. Specifically, show that the Euler- Lagrange equations imply

mu̇α(t) = qFαβ(ζ(t))ζ̇β(t) (1.11)
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Euler-Lagrange equation is written as

d

dt

(
∂L

∂ζ̇α

)
=

∂L

∂ζα
(1.12)

where L = m
√
ζ̇β ζ̇β + qζ̇β(t)Aβ(ζ(t)). Computing Euler-Lagrange equation for

this Lagrangian L, we find

∂L

∂ζ̇α
=

mζ̇α√
ζ̇β ζ̇β

+ qAα

∂L

∂ζα
= qζ̇β∂αAβ

d

dt

(
∂L

∂ζ̇α

)
= mu̇α + qζβ∂βA

α(ζ)

⇒ mu̇α = qζβ(∂αAβ − ∂βAα) = qFαβ ζ̇
β = qFαβ ζ̇β (1.13)

4. Again using time as the parameter, express the four components of the equations of
motion 1.11 in terms of E and B, and the compoents

muα = (E ,p)

ζ̇α = (1,v) (1.14)

Setting α = 0,

Ė = qF 0β ζ̇β = qF 0j ζ̇j = q(−E) · (−v) = qE · v (1.15)

For spatial components,

ṗi = qF iβζβ = qF ij ζ̇j + qF i0ζ̇0 = qEi + qεijkBkζ̇j

= qEi + q(v ×B)i

ṗ = qE + q(v ×B) (1.16)

Field produced by a relativistic charged particle
Consider a particle of charge q described by a general world-line ζ(τ), parametrized by

the proper time τ elapsed along the world-line. In lecture we derive the formula
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∂αAβ(x) =

(
q

y · u

)
d

dτ

(
yαuβ

y · u

)∣∣∣∣
τ=τ0

(2.17)

for the gradient of the 4-vector potential produced by the particle. As in the lecture, u(τ) is
the particle 4-velocity and y(τ) = x − ζ(τ)is the 4-vector separation between x and events
along the world-line. At the parameter value τ = τ0, the separation y is null and the source
ζ(τ0) lies on the past light-cone of x.

1. From the above formula for ∂αAβ obtain Fαβ and show that

E =
q

y · u

(
Ra0 −Ra
y · u

+
Ru0 −Ru

(y · u)2
(1− y · a)

)
B = n̂×E (2.18)

Here (a0,a) = duα/dτ are the components of the 4-acceleration and the null separation
4-vector is expressed in terms of a distance R and unit 3-vector as yα = (R,R) =
(R,Rn̂).

Solution due to Joseph Mittelstaedt edited by Amir

We’ll first expand out the derivative term in ∂αAβ:

d

dτ

(
yαuβ

y · u

)
=
ẏαuβ + yα · uβ

y · u
+

yαuβ

(y · u)2
(ẏ · u+ y · u̇) (2.19)

where everything is evaluated at τ = τ0. We now note that ẏ = −ζ̇, and since we
are parametrizing by τ then ζ̇ = u and u · u = 1. Using this, we can simplify this
term to

d

dτ

(
yαuβ

y · u

)
=
yαaβ − uαuβ

y · u
− yαuβ

(y · u)2
(1− y · a) (2.20)

We can now find the electromagnetic field tensor as

Fαβ = ∂αAβ − ∂βAα

=
q

y · u

(
yαaβ − yβaα

y · u
+
yαuβ − uαyβ

(y · u)2
(1− y · a)

)
(2.21)

We then have that
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Ei = F i0 =
q

y · u

(
yia0 − aiy0

y · u
+
yiu0 − y0ui

(y · u)2
(1− y · a)

)
(2.22)

So that

E =
q

y · u

(
Ra0 −Ra
y · u

+
Ru0 −Ru

(y · u)2
(1− y · a)

)
(2.23)

as desired.
For magnetic field, we can repeat the same steps,

F ij =
q

y · u

(
yiaj − yjai

y · u
+
yiuj − yjui

(y · u)2
(1− y · a)

)
(2.24)

.

Comparing this with n̂×E and using the fact n̂ = R/R, we find

n̂×E =
q

y · u

(
−R× a

y · u
+
−R× u

(y · u)2
(1− y · a)

)
=

qεkij
2y · u

(
−(yiaj − yjai)

y · u
+
−(yiuj − yjui)

(y · u)2
(1− y · a)

)
= −1

2
εkijF

ij = Bk (2.25)

as we wanted to show.

2. Rewrite the expression for E in terms of the ordinary 3-velocity β, the 3-acceleration
β̇ = dβ/dt, γ = 1/

√
1− β2 and arrive at:

E =
q

(γR)2
n̂− βββ

(1− n̂ · βββ)3
+
q

R

n̂× (n̂− βββ)× β̇ββ
(1− n̂ · βββ)3

(2.26)

We can get one term from writing

q

(y · u)3
(Ru0 −Ru) =

qRγ

(γR)3(1− n̂ · β)3
(n̂− ~β)

1

(γR)2
n̂− ~β

(1− n̂ · ~β)3
(2.27)
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The remaining two terms are

qR

y · u

(
n̂a0 − ~a
y · u

− γy · a
(y · u)2

(n̂− ~β)

)
=

qR

(y · u)3

(
(n̂a0 − ~a)(y · u)− γy · a(n̂− ~β)

)
(2.28)

Working out all of the derivatives, the four-acceleration vector has the form

aα =
(
γ4
(
β̇ · β

)
, γ2β̇2 + γ4

(
β̇ · β

)
~β
)

(2.29)

y · a = γ2R
[
γ2
(
β̇ · β

)
− n̂ · ~̇β − γ2

(
β̇ · β

)(
n̂ · ~β

)]
(2.30)

We can now put these into the expression we found above:

qR

y · u

(
n̂a0 − ~a
y · u

− γy · a
(y · u)2

(n̂− ~β)

)
=

qR

(γR)3
(

1− ~β · n̂
)3 [(γ4n̂(β̇ · β)− γ2 ~̇β − γ4 (β̇ · β) ~β) γR(1− ~β · n̂)

−γ3R
[
γ2
(
β̇ · β

)
− n̂ · ~̇β − γ2

(
β̇ · β

)(
n̂ · ~β

)]
(n̂− ~β)

]
=

q

R(1− ~β · n̂)

[
γ2
(
β̇ · β

)(
1− ~β · n̂

)
(n̂− ~β)− ~̇β(1− n̂ · ~β) (2.31)

−γ2
(
β̇ · β

)(
1− ~β · n̂

)
(n̂− ~β) + (n̂ · ~̇β)(1− n̂ · ~β)

]
=

q

R(1− ~β · n̂)

[
(n̂ · ~̇β)(n̂− ~β)− ~̇

β
(

1− n̂ · ~β
)]

=
q

R

(
(n̂− ~β)× ~̇β

)
(1− n̂ · ~β)3

(2.32)

where in the last step we have used the BAC-CAB rule to re-write our expression
in terms of a triple cross-product. With this, the electric field indeed becomes the
correct form:

~E =
q

(γR)2
n̂− ~β

(1− n̂ · ~β)3
+
q

R

n̂×
(

(n̂− ~β)× ~̇β
)

(1− n̂ · ~β)3
(2.33)

Exercise from The Lost Jackson Codex, Vol. XIV

For any field point x not on the world-line ζ(t) of a (non-tachyonic) particle, show that
there is a unique t0 and y(t0) = x− ζ(t0) such that y(t0) · y(t0) = 0 and y0(t0) > 0.
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Due to Veit Elser

Let’s assume there are two points with this property such that y(t1) · y(t1) = 0 and
y(t2) · y(t2) = 0. We can parametrize them as

y(t1) = (R1, R1n̂1) y(t2) = (R2, R2n̂2) (3.34)

where n̂1, n̂2 are unit vectors. I used the fact y0(t1), y
0(t2) > 0 by assuming R1, R2 > 0.

Now let’s consider the norm of y(t1)− y(t2),

(y(t1)− y(t2)) · (y(t1)− y(t2)) = −2y(t1) · y(t2) = −2R1R2(1− n̂1 · n̂2) ≤ 0 (3.35)

Note that y(t1)− y(t2) = ζ(t1)− ζ(t2).
However, this implies that there are two points on the world-line of the particle ζ(t1), ζ(t2)
that the line between these two points are space-like or null which is a contradiction since
any two points on a world-line should be joined by a timelike vector.

Further comment:
Note that we assumed if there are two null intersections with world-line with the con-
dition y0(t1), y

0(t2) > 0, we can derive a contradiction. In order to show at least one
intersection point exists, one need to use the fact that the supremum velocity of a
particle will be smaller than speed of light and not equal to speed of light.
It is a well-known fact that for a particle moving with constant acceleration in special
relativity, there is a point x that lightcones emanating from that point never intersect
with the world-line of the accelerating particle since the particle asymptotically moves
with the speed of light.

7


