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Levi-Civita tensor

The standard Lorentz transformation rule — one A per index — also applies to the
Levi-Civita tensor:

()P = A AP g AT A 2P0,
Show that up to overall sign, the Levi-Civita tensor is Lorentz invariant, i.e. € = +e.

Hints:

e Express the determinant of a general 4 x 4 matrix A%g in terms of Greek indices
and e.

o det AB = det Adet B
o A% A7 =0g".

We'd like to show (¢/)'5"7'0" = o' B87'9",

Before proceeding further, note that symbols like o, 3,a’,~/, -+ are respresenting
a number from the set {0, 1, 2,3} in 4-dimension and it does not matter if you use
them for describing components of € tensor or € tensor. However, for the sake of
aesthetic reasons, we usually use symbols with prime notation for the components
of transformed operators which are also typically denoted by prime notation.

In order to show the result, first note that the right hand side of expression should
be proportional to € tensor. In other words,

AY G AP g AT N 5 P00 = e (1.1)

where C' is some number. For proving this, we need to show that left hand side of

equation 1.1 is totally anti-symmetric tensor. In order to do that, let’s exchange
o and f':

AP A gAY A 5 eoBrd v and B g gl A G Bard
= AT A N A P = A AT A A B (1.2)

So that means € is antisymmetric under the exchange of o’ and ’. We chould
have chosen any other two indices in order to show € is antisymmetric under their
exchange. The only remaining part is to determine the value for C.

For finding C, we can set o/ = 0,5 =1,7 =2,§ =3,
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(61)0123 — 060123 —C = Aoa Alg Az'y A36 6aﬁ'y§ (13)

But the right hand side can be quickly be identified as the determinant of A. Note
that for n x n matrix A = [4];;,

n

detA = Z €i1i2~~inA1i1A2i2 s Aznn (14)

11,89, in=1
So by writing equation 1.3 in usual sum notation we find:
Aoa Alﬂ A2'y A35 eaﬁfyé = €aprs AOa Alﬂ AQ'y A3§ —
det(An) = det(A)det(n) = —detA (1.5)
Since [An]ua = (An)H* = AF n"®

In addition, Lorentz transformations are those real transformations which are sat-
isfying the following relation,

MG N g™ = ApAT =
(detA)? =1 = det A =+1 (1.6)
whereT” denotes transport of the matrix. I aslo used the fact that detn = —1 and

detA” = detA.
Combing these together we find:

C = —detA = £1
j (6/)05//8/7/5/ _ :i:6alﬁl’y/6l (17)

The field tensor and its dual
1. Express the Lorentz scalars
FPFas, FF.s, FF,g,

in terms of E and B.

Let’s review the relationship between F,,3 and E, B:



F8 = 97 AP — 9P A~
Foi = 00A; — 0;Ag = —E;
Fj, = —€1i B (1.8)

FoPE,g:

F¥F,5 = FY%Fy + FOF + F9F;; = —2F"F% 4 pii ¥
_ _2EiEi + (_eijkBk)(_eiijm) — _2EiEi + (5jj5mk: _ (5jm(5jk)BmBk
= —2F'FE' 4+ 2B'B" = —2E* + 2B? (1.9)

F‘IBF&,@»:

FoPF,5 = F,gF*P = 2F, F% 4 F; FY
2F01(%EOijk)Fﬂ'k + %eijWF‘“’Fij = FO%;j, 7% + €40 F*OFY =
Fq;jn FI* + eqpy FFOFY = 2FYeq; 1 FIF
=2(FE")(—2B") = —-4F'B' = —4E - B (1.10)
Where I used e()iijjk = eiijjk = —eijkejkmBm = —-2B™.
Faﬁﬁ'a5:

We don’t need to compute this term explicitly again since for FWF’“’, the
result for F*VF),,, can be used directly by considering transformations E — B
and B — —E. So the result is given by

F*E,, =2(E* - B)? (1.11)

2. Curious fact: .
FF5=0,V7,

for some 4-vector quantity V7. Find V7.



Let’s rewrite F*# Fag in terms of 4-potential

PP R = S0 (9 A% — 9P A%) (07 AD — 07 A)

— SR AT AT — TG AP AT — 07 4o AP 4 07 AP A7
= S0 AP AT — R AT A — PG AP AT 4 LA e AP A°
= 200 ATV AL = 7 (2e0m(07AT)AY) = 2eopys(70° A7) A°

07 (2eapma(07AM)AY) = 7V, = 0,V

Vy = 26,505 A°0% AP (1.12)

Where in third line I relabled indices, for instance in second term I exchanged
~v < §. This can be always done with dummy indices, because we are summing
over them and it does not matter what we call them. In the fourth line, I
used antisymmetry property of € tensor. Second term in the fourth term is
zero since € is antisymmetric and 870%A® is symmetric under v < a.

Note that the choice of V7 is not unique, we always have the freedom to add
a divergenceless vector to V7,

if W7 satisfies O,W7"=0 = 0,(V'+W")=0,V"7 (1.13)

3. Is V7 gauge invariant?

We need to determine how V7 changes under sending A, — A, + 0,,

2ey50 <A6 + 66)\) 0° (AB + 65)\) = 267504514530‘14’8
+ 26,5050 NIV AP+ 2¢,5,5A°°DP N = 2€,50,50° N0 AP (1.14)

Where again we used antisymmetry property of € and the fact that partial
derivatives commute with each other, i.e. symmetric under o < 5. So this
choice of V7 is not gauge invariant.

4. Suppose we modified the action of the electromagnetic field as follows:
1 -
S[A] = / d*z (4Fa5Faﬁ + )\FQBFO,5> ,
with some non-zero parameter \. How would Maxwell’s equations be changed?

You can answer this question without much work if you take advantage of item 2
above.



The Maxwell’s equations are invariant by adding this term to Lagrangian,
since this term is a total derivative and total derivatives won’t affect FKuler-
Lagrange equation since we can integrate them and they become a boundary
term,

S[A] = / d*z <iFWFW> + A / d*zd, V7

1
= /d4l' <4F“VFH1/)

+>\/ &Pz (VHT,7) — VYT, %)) +)\/ d?Sdtit -V (t,rii)  (1.15)
T—o0 r—00

where boundary terms are computed on a boundary of large cylinder on in-
finity, vanishing by assuming fields die off at large distances and times.

Note that just like classical mechanics, in variational problems, we always
fixing value of fields in some given reference times, so we don’t really need to
assume about behavior of fields at +7', —T'.

Moreover, computing the part of equation of motion for this piece of La-
grangian is explicitly given by

OL = 2€,5,50" APV A°
L ., ( OSL
O A O(omAx)

= —dear s A’ = 0 (1.16)

) = 0 (2eoa (80207 A4° + 58307 A%))

5. Construct all possible cubic Lorentz invariants from £ and F.

solution due to Alen Senanian:

Any cubic contractions of F and F' must have one of the following forms

F*,FPF.  FM,Fr, PP, FPFGF8 (1.17)

with permuted replacements of F' with F across each of the three expressions.
The first two are trivially zero since F and F are anti-symmetric and thus
traceless. To evaluate the third form of the cubic Lorentz invariant, we note
that for any anti-symmetric 2nd-rank tensors A and B, we can define a tensor
SH, = A** B, such that




S = (5")" = (Baw) " (A*)T = B,o A
By, AF® = S, (1.18)

That is, the construction of a second rank tensor by the contraction of one
degree of freedom from two second rank anti-symmetric tensors is a symmet-
ric one. Further, the full contraction of a symmetric tensor with an anti-
symmetric one vanishes

14 1 14 v
S AY = S(SH A+ S LAY )
= %(S“ vAY |+ SV AR ) (1.19)

where we took advantage of the freedom to relabel any dummy indices for
the second term in the last line. Now, since S is symmetric and A is anti-
symmetric, we have

1
S LAY = S (S LAY = S LAY ) = 0 (1.20)

Therefore, an cubic Lorentz invariant with three anti-symmetric tensors al-
ways vanish.

Further comment:

Another way to see this fact is by considering F¥ and B. Note that a neces-
sary condition for Lorentz invariance is rotational invariance, however, there
are no cubic rotational invariant structures made out of electric field and
magnetic field. Any cubic rotational invariant construction has the form
€k EiExyBj, €, B;BpBj, -+ in order to have no free indices which guar-
antees rotational invariance. However, any of these combinations have at
least two componet of E or B, so they vanish due to antisymmetry property
of € and exchanging symmetic components like F; F, = EiFE; and so forth.




