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Levi-Civita tensor

The standard Lorentz transformation rule — one Λ per index — also applies to the
Levi-Civita tensor:

(ε′)α
′β′γ′δ′ = Λα

′
α Λβ

′
β Λγ

′
γ Λδ

′
δ ε

αβγδ.

Show that up to overall sign, the Levi-Civita tensor is Lorentz invariant, i.e. ε′ = ±ε.
Hints:

• Express the determinant of a general 4× 4 matrix Aαβ in terms of Greek indices
and ε.

• detAB = detAdetB

• Λαβ Λα
γ = δβ

γ .

We’d like to show (ε′)α
′β′γ′δ′ = ±εα′β′γ′δ′ .

Before proceeding further, note that symbols like α, β, α′, γ′, · · · are respresenting
a number from the set {0, 1, 2, 3} in 4-dimension and it does not matter if you use
them for describing components of ε tensor or ε′ tensor. However, for the sake of
aesthetic reasons, we usually use symbols with prime notation for the components
of transformed operators which are also typically denoted by prime notation.

In order to show the result, first note that the right hand side of expression should
be proportional to ε tensor. In other words,

Λα
′
α Λβ

′
β Λγ

′
γ Λδ

′
δ ε

αβγδ = Cεα
′β′γ′δ′ (1.1)

where C is some number. For proving this, we need to show that left hand side of
equation 1.1 is totally anti-symmetric tensor. In order to do that, let’s exchange
α′ and β′:

Λβ
′
α Λα

′
β Λγ

′
γ Λδ

′
δ ε

αβγδ relabling α and β
= Λβ

′
β Λα

′
α Λγ

′
γ Λδ

′
δ ε

βαγδ

= −Λβ
′
β Λα

′
α Λγ

′
γ Λδ

′
δ ε

αβγδ = −Λα
′
α Λβ

′
β Λγ

′
γ Λδ

′
δ ε

αβγδ (1.2)

So that means ε′ is antisymmetric under the exchange of α′ and β′. We chould
have chosen any other two indices in order to show ε′ is antisymmetric under their
exchange. The only remaining part is to determine the value for C.
For finding C, we can set α′ = 0, β′ = 1, γ′ = 2, δ′ = 3,
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(ε′)0123 = Cε0123 = C = Λ0
α Λ1

β Λ2
γ Λ3

δ ε
αβγδ (1.3)

But the right hand side can be quickly be identified as the determinant of Λ. Note
that for n× n matrix A = [A]ij ,

detA =
n∑

i1,i2,···in=1

εi1i2···inA1i1A2i2 · · ·Ainn (1.4)

So by writing equation 1.3 in usual sum notation we find:

Λ0
α Λ1

β Λ2
γ Λ3

δ ε
αβγδ = εαβγδ Λ0α Λ1β Λ2γ Λ3δ =

det(Λη) = det(Λ)det(η) = −detΛ (1.5)

Since [Λη]µα = (Λη)µα = Λµ νη
να

In addition, Lorentz transformations are those real transformations which are sat-
isfying the following relation,

Λµ α Λν β η
αβ = ηµν ΛηΛT = η

(detΛ)2 = 1 ⇒ det Λ = ±1 (1.6)

whereT denotes transport of the matrix. I aslo used the fact that detη = −1 and
detΛT = detΛ.
Combing these together we find:

C = −detΛ = ±1

⇒ (ε′)α
′β′γ′δ′ = ±εα′β′γ′δ′ (1.7)

The field tensor and its dual

1. Express the Lorentz scalars

FαβFαβ, FαβF̃αβ, F̃αβF̃αβ,

in terms of E and B.

Let’s review the relationship between Fαβ and E,B:

2



Fαβ = ∂αAβ − ∂βAα

F 0i = Ei F jk = −εijkBi

F0i = ∂0Ai − ∂iA0 = −Ei
Fjk = −εjkiBi (1.8)

FαβFαβ:

FαβFαβ = F 0iF0i + F i0Fi0 + F ijFij = −2F 0iF 0i + F ijF ij

= −2EiEi + (−εijkBk)(−εijmBm) = −2EiEi + (δjjδmk − δjmδjk)BmBk

= −2EiEi + 2BiBi = −2E2 + 2B2 (1.9)

F̃αβFαβ:

F̃αβFαβ = F̃αβF
αβ = 2F̃0iF

0i + F̃ijF
ij

2F 0i(
1

2
ε0ijk)F

jk +
1

2
εijµνF

µνF ij = F 0iε0ijkF
jk + εijk0F

k0F ij =

F 0iε0ijkF
jk + ε0kijF

k0F ij = 2F 0iε0ijkF
jk

= 2(Ei)(−2Bi) = −4EiBi = −4E ·B (1.10)

Where I used ε0ijkF
jk = εijkF

jk = −εijkεjkmBm = −2Bm.

F̃αβF̃αβ:

We don’t need to compute this term explicitly again since for F̃µνF̃
µν , the

result for FµνFµν can be used directly by considering transformations E→ B
and B→ −E. So the result is given by

F̃µνF̃µν = 2(E2 −B)2 (1.11)

2. Curious fact:
FαβF̃αβ = ∂γV

γ ,

for some 4-vector quantity V γ . Find V γ .
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Let’s rewrite FαβF̃αβ in terms of 4-potential

FαβF̃αβ =
εαβγδ

2
(∂αAβ − ∂βAα)(∂γAδ − ∂δAγ)

=
εαβγδ

2
∂αAβ∂γAδ −

εαβγδ
2

∂αAβ∂δAγ −
εαβγδ

2
∂βAα∂γAδ +

εαβγδ
2

∂βAα∂δAγ

=
εαβγδ

2
∂αAβ∂γAδ −

εαβδγ
2

∂αAβ∂γAδ −
εβαγδ

2
∂αAβ∂γAδ +

εβαδγ
2

∂αAβ∂γAδ

= 2εαβγδ∂
αAβ∂γAδ = ∂γ

(
2εαβγδ(∂

αAβ)Aδ
)
− 2εαβγδ(∂

γ∂αAβ)Aδ

∂γ
(

2εαβγδ(∂
αAβ)Aδ

)
= ∂γVγ = ∂γV

γ

Vγ = 2εγδαβA
δ∂αAβ (1.12)

Where in third line I relabled indices, for instance in second term I exchanged
γ ⇔ δ. This can be always done with dummy indices, because we are summing
over them and it does not matter what we call them. In the fourth line, I
used antisymmetry property of ε tensor. Second term in the fourth term is
zero since ε is antisymmetric and ∂γ∂αAβ is symmetric under γ ⇔ α.
Note that the choice of V γ is not unique, we always have the freedom to add
a divergenceless vector to V γ ,

if W γ satisfies ∂γW
γ = 0 ⇒ ∂γ(V γ +W γ) = ∂γV

γ (1.13)

3. Is V γ gauge invariant?

We need to determine how V γ changes under sending Aµ → Aµ + ∂µλ,

2εγδαβ

(
Aδ + ∂δλ

)
∂α
(
Aβ + ∂βλ

)
= 2εγδαβA

δ∂αAβ

+ 2εγδαβ∂
δλ∂αAβ + 2εγδαβA

δ∂α∂βλ = 2εγδαβ∂
δλ∂αAβ (1.14)

Where again we used antisymmetry property of ε and the fact that partial
derivatives commute with each other, i.e. symmetric under α ⇔ β. So this
choice of V γ is not gauge invariant.

4. Suppose we modified the action of the electromagnetic field as follows:

S[A] =

∫
d4x

(
1

4
FαβFαβ + λFαβF̃αβ

)
,

with some non-zero parameter λ. How would Maxwell’s equations be changed?
You can answer this question without much work if you take advantage of item 2
above.

4



The Maxwell’s equations are invariant by adding this term to Lagrangian,
since this term is a total derivative and total derivatives won’t affect Euler-
Lagrange equation since we can integrate them and they become a boundary
term,

S[A] =

∫
d4x

(
1

4
FµνFµν

)
+ λ

∫
d4x∂γV

γ

=

∫
d4x

(
1

4
FµνFµν

)
+ λ

∫
T→∞

d3~x
(
V t(T, ~x)− V t(−T, ~x)

)
+ λ

∫
r→∞

d2Sdt~n · ~V (t, r~n) (1.15)

where boundary terms are computed on a boundary of large cylinder on in-
finity, vanishing by assuming fields die off at large distances and times.
Note that just like classical mechanics, in variational problems, we always
fixing value of fields in some given reference times, so we don’t really need to
assume about behavior of fields at +T,−T .
Moreover, computing the part of equation of motion for this piece of La-
grangian is explicitly given by

δL = 2ενβγδ∂
νAβ∂γAδ

∂δL

∂Aα
− ∂µ

(
∂δL

∂(∂µAα)

)
= −∂µ

(
2ενβγδ(δ

ν
µδ
β
α∂

γAδ + δγµδ
δ
α∂

νAβ)
)

= −4εµαγδ∂
µ∂γAδ = 0 (1.16)

5. Construct all possible cubic Lorentz invariants from F and F̃ .

solution due to Alen Senanian:

Any cubic contractions of F and F̃ must have one of the following forms

Fµ µF
αβFαβ Fµ µF

µ
µF

µ
µ FµαFαβF

β
µ, (1.17)

with permuted replacements of F with F̃ across each of the three expressions.
The first two are trivially zero since F and F̃ are anti-symmetric and thus
traceless. To evaluate the third form of the cubic Lorentz invariant, we note
that for any anti-symmetric 2nd-rank tensors A and B, we can define a tensor
Sµ ν = AµαBαν such that
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Sν µ = (Sµ ν)T = (Bαν)T (Aµα)T = BναA
αµ

BανA
µα = Sµ ν (1.18)

That is, the construction of a second rank tensor by the contraction of one
degree of freedom from two second rank anti-symmetric tensors is a symmet-
ric one. Further, the full contraction of a symmetric tensor with an anti-
symmetric one vanishes

Sµ νA
ν
µ =

1

2
(Sµ νA

ν
µ + Sµ νA

ν
µ)

=
1

2
(Sµ νA

ν
µ + Sν µA

µ
ν) (1.19)

where we took advantage of the freedom to relabel any dummy indices for
the second term in the last line. Now, since S is symmetric and A is anti-
symmetric, we have

Sµ νA
ν
µ =

1

2
(Sµ νA

ν
µ − Sµ νAν µ) = 0 (1.20)

Therefore, an cubic Lorentz invariant with three anti-symmetric tensors al-
ways vanish.

Further comment:

Another way to see this fact is by considering E and B. Note that a neces-
sary condition for Lorentz invariance is rotational invariance, however, there
are no cubic rotational invariant structures made out of electric field and
magnetic field. Any cubic rotational invariant construction has the form
εijkEiEkBj , εijkBiBkBj , · · · in order to have no free indices which guar-
antees rotational invariance. However, any of these combinations have at
least two componet of E or B, so they vanish due to antisymmetry property
of ε and exchanging symmetic components like EiEk = EkEi and so forth.
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