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Angular momentum content of the magnetic field of a trap

A static magnetic field B, such as used in an atom-trap, can always be expressed as ∇Φ,
where the magnetic potential function Φ satisfies the Laplace equation. A systematic
expansion of Φ uses the fact that the functions

x± iy = r sin θ e±iφ

z = r cos θ

are a basis for the angular momentum functions for l = 1. By the addition rule
of angular momentum, all angular momentum functions (spherical harmonics) with
angular momentum l and below can therefore be expressed as polynomials in x, y, and
z of degree at most l.

Show that a Φ of polynomial degree 2 (l ≤ 2) can never produce a magnetic field having
the necessary properties of a magnetic trap:

• |B| has a local minimum1.

• At the minimum, |B| > 0.

Φ is a polynomial degree 2 in terms of coordinates x, y, z. Compactly, we can write
Φ as

Φ = xTAx + cTx + Φ0 (1.1)

Where A is a matrix characterizing second order terms, c is determining the first
order polynomial in Φ, and Φ0 is a constant. x = {x, y, z}. It is implicit in this
expansion that we chose origin at the point in the space that we’re determining its
magentic filed property, otherwise we should replace x by x− x0.
Using this expression we can also write B compactly as

B = ∇Φ = 2Ax + c (1.2)

B(x, y, z) = c + 2Ax (1.3)

1Here “local minimum” means the minimum occurs at a point as opposed to an entire line or plane.
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Note that if this matrix A is a full rank matrix (the kernel is zero), it should have
an inverse. Thus, there is a uniques solution for the point in which magnetic field
vanishes,

x? = −1

2
A−1c (1.4)

where I only used invertibility of A and there is no assumption about c. So that
means there is point that |B| has a local minimum but |B|=0. So this case is not
compatible with properties mention in the question.
The only other possibility is that the matrix A is not invertible, and therefore has
a null subspace. More explicitly, there is a non-zero vector w such that

Aw = 0 (1.5)

However, that means if there will be any point, let’s say v, in which magnetic field
magnitude |B| = |B0 + Av| reaches the minimum value, there is at least a line of
points, given by v + αw, that for any value of α ∈ R, the magnetic field has the
same minimum value and this is inconsistent with having a minimum magnitude
only at the isolated points.

Basis change to align the field

The interaction of a spin-1/2 particle with a magnetic field B is given by the Hamilto-
nian term

µB · σ,

where µ is the particle’s magnetic dipole moment and σ is the vector of Pauli matrices
that make up the spin operator. To better understand the trapping power of a designed,
spatially varying magnetic field, we make a basis change (dependent on position) so
that “spin-up” always corresponds to the direction of the magnetic field. The required
unitary transformation is the following

U =
1√
2

(√
1 + b̂ · ẑ 1− i b̂× ẑ · σ√

1 + b̂ · ẑ

)
,

where b̂ = B/|B|. By repeatedly using the Pauli-matrix identity (for general vectors a
and b)

(a · σ)(b · σ) = a · b 1+ i a× b · σ,

show that
U B · σ U † = |B|σz.
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U has two terms, so by expanding UB · σU †, we find 4 different terms. Before
expanding, using BAC-CAB identity, we can work out the following expressions:

(B · σ)(b̂× ẑ · σ) =
(
B · (b̂× ẑ)

)
1 + i[B× (b̂× ẑ)] · σ

= i
[
b̂(B · ẑ)− ẑ|B|

]
· σ = i(b̂ · σ)(B · ẑ)− i(ẑ · σ)|B| (1.6)

= i(B̂ · σ)(b · ẑ)− i(ẑ · σ)|B|

(b̂× ẑ · σ)(B · σ) = −(B · σ)(b̂× ẑ · σ) (1.7)

Where I used B · (b̂× ẑ) = ẑ · (B× b̂) = 0.

(
(b̂× ẑ) · σ

)(
(b̂× ẑ) · σ

)
=
(

(b̂× ẑ)
)
·
(

(b̂× ẑ)
)
1

= sin2(θ)1 =
(

1− (ẑ · b̂)2
)
1 (1.8)

Where I used
(

(b̂× ẑ)
)
×
(

(b̂× ẑ)
)

= 0.

θ is the angle between B and the z-axis.

(
(b̂× ẑ) · σ

)
(B · σ)

(
(b̂× ẑ) · σ

)
=
(

(b̂× ẑ) · σ
)
i
(

[B× (b̂× ẑ)] · σ
)

=

= i2
[
(b̂× ẑ)×

(
[B× (b̂× ẑ)]

)]
· σ = − sin2(θ)B · σ (1.9)

Now, we need to expand UB · σU † and substitute terms by above calculations:

UB · σU † =
1

2

(
1 + b̂ · ẑ

)
B · σ

+
i

2
B · σ

(
b̂× ẑ · σ

)
− i

2

(
b̂× ẑ · σ

)
B · σ

+
1

2

1

1 + b̂ · ẑ

(
b̂× ẑ · σ

)
B · σ

(
b̂× ẑ · σ

)
=

1

2
(1 + cos(θ))B · σ + i

(
i[σ · B̂ cos(θ)− σz|B|]

)
+

1

2(1 + cos θ)
(− sin2(θ)B · σ)

= (B · σ)
(1 + cos θ)2 − sin2 θ − 2 cos θ(1 + cos θ)

2(1 + cos(θ))
+ |B|σz

= |B|σz (1.10)
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where one can show easily another term is equal to zero and this completes the
proof.

Artificial vector potential for the magnetic trap2

After making the basis change in the previous problem, the Hamiltonian for the spin-
1/2 particle is given by

H = − ~2

2m
(∇+ A) · (∇+ A) + µ |B|σz

= − ~2

2m
∇2 + µ |B|σz +Hint,

where m is the particle mass and

A = U(∇ U †)

is an artificial vector potential, each vector-component of which is a spin operator (a
combination of Pauli matrices). If we could neglect Hint, then a spin-up particle would
be permanently trapped in a trap where |B| satisfies the properties given in the first
problem. The interaction

Hint = − ~2

2m
((∇ ·A) + A ·A + 2A · ∇)

= F + G · ∇

has two terms that could bring about a transition from spin-up to spin-down. Calculate
F and G, keeping only the lowest non-vanishing terms in an expansion in powers
of x, y and z (i.e. the combined power of r, the distance to the center of the trap). Use
the three-parameter expression for B derived in lecture:

B =
(
βx− γ

2
xz
)
x̂ +

(
−βy − γ

2
yz
)
ŷ +

(
B − γ

4
(x2 + y2) +

γ

2
z2
)
ẑ,

B, β and γ are positive and satisfy

β2

B
>
γ

2
.

You should pay special attention to the off-diagonal terms, as they are responsible for
the transition.

See attached Mathematica notebook on the website!

2You may use Mathematica for this problem.
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