# Physics 6561 Fall 2017 <br> Problem Set 10 Solutions 

Amir Tajdini<br>at734@cornell.edu

## Angular momentum content of the magnetic field of a trap

A static magnetic field $\mathbf{B}$, such as used in an atom-trap, can always be expressed as $\nabla \Phi$, where the magnetic potential function $\Phi$ satisfies the Laplace equation. A systematic expansion of $\Phi$ uses the fact that the functions

$$
\begin{aligned}
x \pm i y & =r \sin \theta e^{ \pm i \phi} \\
z & =r \cos \theta
\end{aligned}
$$

are a basis for the angular momentum functions for $l=1$. By the addition rule of angular momentum, all angular momentum functions (spherical harmonics) with angular momentum $l$ and below can therefore be expressed as polynomials in $x, y$, and $z$ of degree at most $l$.
Show that a $\Phi$ of polynomial degree $2(l \leq 2)$ can never produce a magnetic field having the necessary properties of a magnetic trap:

- $|\mathbf{B}|$ has a local minimum ${ }^{1}$.
- At the minimum, $|\mathbf{B}|>0$.
$\Phi$ is a polynomial degree 2 in terms of coordinates $x, y, z$. Compactly, we can write $\Phi$ as

$$
\begin{equation*}
\Phi=\mathbf{x}^{T} A \mathbf{x}+\mathbf{c}^{\mathbf{T}} \mathbf{x}+\Phi_{0} \tag{1.1}
\end{equation*}
$$

Where $A$ is a matrix characterizing second order terms, $\mathbf{c}$ is determining the first order polynomial in $\Phi$, and $\Phi_{0}$ is a constant. $\mathbf{x}=\{x, y, z\}$. It is implicit in this expansion that we chose origin at the point in the space that we're determining its magentic filed property, otherwise we should replace $\mathbf{x}$ by $\mathbf{x}-\mathbf{x}_{\mathbf{0}}$.
Using this expression we can also write $\mathbf{B}$ compactly as

$$
\begin{gather*}
B=\nabla \Phi=2 A \mathbf{x}+\mathbf{c}  \tag{1.2}\\
\mathbf{B}(x, y, z)=\mathbf{c}+2 A \mathbf{x} \tag{1.3}
\end{gather*}
$$

[^0]Note that if this matrix $A$ is a full rank matrix (the kernel is zero), it should have an inverse. Thus, there is a uniques solution for the point in which magnetic field vanishes,

$$
\begin{equation*}
\mathbf{x}^{\star}=-\frac{1}{2} A^{-1} \mathbf{c} \tag{1.4}
\end{equation*}
$$

where I only used invertibility of $A$ and there is no assumption about $\mathbf{c}$. So that means there is point that $|\mathbf{B}|$ has a local minimum but $|\mathbf{B}|=0$. So this case is not compatible with properties mention in the question.
The only other possibility is that the matrix $A$ is not invertible, and therefore has a null subspace. More explicitly, there is a non-zero vector $\mathbf{w}$ such that

$$
\begin{equation*}
A \mathbf{w}=0 \tag{1.5}
\end{equation*}
$$

However, that means if there will be any point, let's say $\mathbf{v}$, in which magnetic field magnitude $|\mathbf{B}|=\left|\mathbf{B}_{0}+A \mathbf{v}\right|$ reaches the minimum value, there is at least a line of points, given by $\mathbf{v}+\alpha \mathbf{w}$, that for any value of $\alpha \in \mathbb{R}$, the magnetic field has the same minimum value and this is inconsistent with having a minimum magnitude only at the isolated points.

## Basis change to align the field

The interaction of a spin- $1 / 2$ particle with a magnetic field $\mathbf{B}$ is given by the Hamiltonian term

$$
\mu \mathbf{B} \cdot \boldsymbol{\sigma},
$$

where $\mu$ is the particle's magnetic dipole moment and $\boldsymbol{\sigma}$ is the vector of Pauli matrices that make up the spin operator. To better understand the trapping power of a designed, spatially varying magnetic field, we make a basis change (dependent on position) so that "spin-up" always corresponds to the direction of the magnetic field. The required unitary transformation is the following

$$
U=\frac{1}{\sqrt{2}}\left(\sqrt{1+\hat{\mathbf{b}} \cdot \hat{\mathbf{z}}} \mathbb{1}-i \frac{\hat{\mathbf{b}} \times \hat{\mathbf{z}} \cdot \boldsymbol{\sigma}}{\sqrt{1+\hat{\mathbf{b}} \cdot \hat{\mathbf{z}}}}\right),
$$

where $\hat{\mathbf{b}}=\mathbf{B} /|\mathbf{B}|$. By repeatedly using the Pauli-matrix identity (for general vectors a and $\mathbf{b}$ )

$$
(\mathbf{a} \cdot \boldsymbol{\sigma})(\mathbf{b} \cdot \boldsymbol{\sigma})=\mathbf{a} \cdot \mathbf{b} \mathbb{1}+i \mathbf{a} \times \mathbf{b} \cdot \boldsymbol{\sigma},
$$

show that

$$
U \mathbf{B} \cdot \boldsymbol{\sigma} U^{\dagger}=|\mathbf{B}| \sigma_{z} .
$$

$U$ has two terms, so by expanding $U \mathbf{B} \cdot \sigma U^{\dagger}$, we find 4 different terms. Before expanding, using BAC-CAB identity, we can work out the following expressions:

$$
\begin{align*}
& (\mathbf{B} \cdot \boldsymbol{\sigma})(\hat{\mathbf{b}} \times \hat{\mathbf{z}} \cdot \boldsymbol{\sigma})=(\mathbf{B} \cdot(\hat{\mathbf{b}} \times \hat{\mathbf{z}})) \mathbb{1}+i[\mathbf{B} \times(\hat{\mathbf{b}} \times \hat{\mathbf{z}})] \cdot \boldsymbol{\sigma} \\
& =i[\hat{\mathbf{b}}(\mathbf{B} \cdot \hat{\mathbf{z}})-\hat{\mathbf{z}}|\mathbf{B}|] \cdot \boldsymbol{\sigma}=i(\hat{\mathbf{b}} \cdot \boldsymbol{\sigma})(\mathbf{B} \cdot \hat{\mathbf{z}})-i(\hat{\mathbf{z}} \cdot \boldsymbol{\sigma})|\mathbf{B}|  \tag{1.6}\\
& =i(\hat{\mathbf{B}} \cdot \boldsymbol{\sigma})(\mathbf{b} \cdot \hat{\mathbf{z}})-i(\hat{\mathbf{z}} \cdot \boldsymbol{\sigma})|\mathbf{B}| \\
& (\hat{\mathbf{b}} \times \hat{\mathbf{z}} \cdot \boldsymbol{\sigma})(\mathbf{B} \cdot \boldsymbol{\sigma})=-(\mathbf{B} \cdot \boldsymbol{\sigma})(\hat{\mathbf{b}} \times \hat{\mathbf{z}} \cdot \boldsymbol{\sigma}) \tag{1.7}
\end{align*}
$$

Where I used $\mathbf{B} \cdot(\hat{\mathbf{b}} \times \hat{\mathbf{z}})=\hat{\mathbf{z}} \cdot(\mathbf{B} \times \hat{\mathbf{b}})=0$.

$$
\begin{align*}
& ((\hat{\mathbf{b}} \times \hat{\mathbf{z}}) \cdot \boldsymbol{\sigma})((\hat{\mathbf{b}} \times \hat{\mathbf{z}}) \cdot \boldsymbol{\sigma})=((\hat{\mathbf{b}} \times \hat{\mathbf{z}})) \cdot((\hat{\mathbf{b}} \times \hat{\mathbf{z}})) \mathbb{1} \\
& =\sin ^{2}(\theta) \mathbb{1}=\left(1-(\hat{\mathbf{z}} \cdot \hat{\mathbf{b}})^{2}\right) \mathbb{1} \tag{1.8}
\end{align*}
$$

Where I used $((\hat{\mathbf{b}} \times \hat{\mathbf{z}})) \times((\hat{\mathbf{b}} \times \hat{\mathbf{z}}))=0$.
$\theta$ is the angle between $\mathbf{B}$ and the z-axis.

$$
\begin{align*}
& ((\hat{\mathbf{b}} \times \hat{\mathbf{z}}) \cdot \boldsymbol{\sigma})(\mathbf{B} \cdot \boldsymbol{\sigma})((\hat{\mathbf{b}} \times \hat{\mathbf{z}}) \cdot \boldsymbol{\sigma})=((\hat{\mathbf{b}} \times \hat{\mathbf{z}}) \cdot \boldsymbol{\sigma}) i([\mathbf{B} \times(\hat{\mathbf{b}} \times \hat{\mathbf{z}})] \cdot \boldsymbol{\sigma})= \\
& =i^{2}[(\hat{\mathbf{b}} \times \hat{\mathbf{z}}) \times([\mathbf{B} \times(\hat{\mathbf{b}} \times \hat{\mathbf{z}})])] \cdot \boldsymbol{\sigma}=-\sin ^{2}(\theta) \mathbf{B} \cdot \boldsymbol{\sigma} \tag{1.9}
\end{align*}
$$

Now, we need to expand $U \mathbf{B} \cdot \boldsymbol{\sigma} U^{\dagger}$ and substitute terms by above calculations:

$$
\begin{align*}
U \mathbf{B} \cdot \boldsymbol{\sigma} U^{\dagger}= & \frac{1}{2}(1+\hat{\mathbf{b}} \cdot \hat{\mathbf{z}}) \mathbf{B} \cdot \boldsymbol{\sigma} \\
& +\frac{i}{2} \mathbf{B} \cdot \boldsymbol{\sigma}(\hat{\mathbf{b}} \times \hat{\mathbf{z}} \cdot \boldsymbol{\sigma}) \\
& -\frac{i}{2}(\hat{\mathbf{b}} \times \hat{\mathbf{z}} \cdot \boldsymbol{\sigma}) \mathbf{B} \cdot \boldsymbol{\sigma} \\
& +\frac{1}{2} \frac{1}{1+\hat{\mathbf{b}} \cdot \hat{\mathbf{z}}}(\hat{\mathbf{b}} \times \hat{\mathbf{z}} \cdot \boldsymbol{\sigma}) \mathbf{B} \cdot \boldsymbol{\sigma}(\hat{\mathbf{b}} \times \hat{\mathbf{z}} \cdot \boldsymbol{\sigma}) \\
= & \frac{1}{2}(1+\cos (\theta)) \mathbf{B} \cdot \boldsymbol{\sigma}+i\left(i\left[\boldsymbol{\sigma} \cdot \hat{\mathbf{B}} \cos (\theta)-\sigma_{z}|\mathbf{B}|\right]\right) \\
& +\frac{1}{2(1+\cos \theta)}\left(-\sin ^{2}(\theta) \mathbf{B} \cdot \boldsymbol{\sigma}\right) \\
& =(\mathbf{B} \cdot \boldsymbol{\sigma}) \frac{(1+\cos \theta)^{2}-\sin ^{2} \theta-2 \cos \theta(1+\cos \theta)}{2(1+\cos (\theta))}+|\mathbf{B}| \sigma_{z} \\
& =|\mathbf{B}| \sigma_{z} \tag{1.10}
\end{align*}
$$

where one can show easily another term is equal to zero and this completes the proof.

Artificial vector potential for the magnetic trap ${ }^{2}$
After making the basis change in the previous problem, the Hamiltonian for the spin$1 / 2$ particle is given by

$$
\begin{aligned}
H & =-\frac{\hbar^{2}}{2 m}(\nabla+\mathbf{A}) \cdot(\nabla+\mathbf{A})+\mu|\mathbf{B}| \sigma_{z} \\
& =-\frac{\hbar^{2}}{2 m} \nabla^{2}+\mu|\mathbf{B}| \sigma_{z}+H_{\mathrm{int}}
\end{aligned}
$$

where $m$ is the particle mass and

$$
\mathbf{A}=U\left(\nabla U^{\dagger}\right)
$$

is an artificial vector potential, each vector-component of which is a spin operator (a combination of Pauli matrices). If we could neglect $H_{\text {int }}$, then a spin-up particle would be permanently trapped in a trap where $|\mathbf{B}|$ satisfies the properties given in the first problem. The interaction

$$
\begin{aligned}
H_{\mathrm{int}} & =-\frac{\hbar^{2}}{2 m}((\nabla \cdot \mathbf{A})+\mathbf{A} \cdot \mathbf{A}+2 \mathbf{A} \cdot \nabla) \\
& =F+\mathbf{G} \cdot \nabla
\end{aligned}
$$

has two terms that could bring about a transition from spin-up to spin-down. Calculate $F$ and G, keeping only the lowest non-vanishing terms in an expansion in powers of $x, y$ and $z$ (i.e. the combined power of $r$, the distance to the center of the trap). Use the three-parameter expression for $\mathbf{B}$ derived in lecture:

$$
\mathbf{B}=\left(\beta x-\frac{\gamma}{2} x z\right) \hat{\mathbf{x}}+\left(-\beta y-\frac{\gamma}{2} y z\right) \hat{\mathbf{y}}+\left(B-\frac{\gamma}{4}\left(x^{2}+y^{2}\right)+\frac{\gamma}{2} z^{2}\right) \hat{\mathbf{z}},
$$

$B, \beta$ and $\gamma$ are positive and satisfy

$$
\frac{\beta^{2}}{B}>\frac{\gamma}{2}
$$

You should pay special attention to the off-diagonal terms, as they are responsible for the transition.

## See attached Mathematica notebook on the website!

[^1]
[^0]:    ${ }^{1}$ Here "local minimum" means the minimum occurs at a point as opposed to an entire line or plane.

[^1]:    ${ }^{2}$ You may use Mathematica for this problem.

