Physics 6561 Fall 2017
Problem Set 6 Solutions

Amir Tajdini
at734Qcornell.edu

Ground state wavefunction of the electromagnetic field

Recall from lecture the Hamiltonian operator for the electromagnetic field,

N hc)? 1
H = /d3$ (( 2) aAi(X)aAi(X) + §|v x A(X)2> >

and ground state wave-functional:

Wo[A(x)] = exp (—/f/d?’:c/d?’y VX Af;‘)_‘ ;; A(Y))

Your task is to determine the value of the constant x that is consistent with the
Schrédinger equation
HUy = Ey¥q.

You can do this without having to evaluate Ey (which is infinite in the absence of a
cutoff).

As a warm-up, let’s do the analogous calculation for the 1D harmonic oscillator with
Hamiltonian )
- h k
H = *782 o2
om e T 5"
and ground state wavefunction ¥y = exp (—cz?). The pair of derivatives in H acting

on ¥y produces two terms:
6§\I/0 = (833(—0.%2))2 Wy + (axam(—ch)) Wy.

For the correct value of ¢, the first term exactly cancels the (k/2)22¥ term in HU,.
This is the extent of what you are being asked to do in the case of the electromagnetic
field Schrodinger equation. It’s enough to note that the second term is independent of
x (or A(x)) and therefore its value (even if infinite!) is the energy eigenvalue.

4

For many of you the main challenge in this problem will be working with the “varia-

tional” or “functional” derivative 04, (x). Below are some instances of how this operator
acts. Be sure you understand each example! Repeated latin indices are summed, as
usual.

In these, f( ) is an arbitrary scalar function (not functional) taking a vector argument:
Onx)04,x) f(A(y) =0, x#y

0a,(x)04,(x) f(A(x)) = Vivf(w)\w:A(x)~

The following show the action of just a single functional derivative:

Ia,x) (A5 (x)A;(y)) = Ai(y)
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D) / Py f(¥)V - Aly) = 04,09 / Py (~V () Aly)
= 0, /().

As in these examples, you may always neglect boundary terms when integrating by
parts.

Here are some concrete hints, roughly in the order you’ll need them.

1.
Vaz f(lx —z[]) = =Vx f(lx —2|)
2.
(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c)
3.
d3z 3
!/x—z%y—af:x—y
4.
V-Vxv=0
0.

1
i () =)

Finally, here are some motivational quotes:

Let’s name the argument inside the exponential in the eigenfunction as F[A(x)]:

F[A(z)] = —k

3x/d3y V x A‘(;()_' }V,’QX A(y)
A(z)])

d
Wo[A(x)] = exp (F] (1.1)

So substituting in Schrédinger equation, similar to harmonic oscillator example we
find:

HUo[A(z)] = Eg¥o = / &3z (- (h;)2 ( aﬁm) < aiﬁ)) v, (1.2)

c 2 2
(hQ) 825)2% + %\v X A(x)|2\llo> . (1.3)

Since F' is second order in A(x), by taking functional derivative of F' with respect to A(x)
twice, there will be no A dependence left, so in order to satisfy Schrodinger equation,
the first term in the Eq 1.2 needs to cancel the third term which assumes Fy does not




depend on A(x) as we expect for ground state even if its energy is infinite!
Let’s work out details of 04, (4

: VxA(y) VxA(z
04, FIA(x)] = —ffaAi(z)//ddyd?’z |(;’) (=)

T

_ —2&//d3yd3z O,V X’;&(_yi‘)z‘ V x A(z) (1.4)

Where factors of two coming from symmetry y <+ z. In other words, when derivative is
acting on A(z) term, we renamed y, z and denominator is symmetric under this exchange
and as a result we have symmetry factor equals to 2.

Let’s evaluate (GA,L.(I)V x Ay)):

(V % A))' = b0 An(y)
( @V X A( >) = (00,0 An(y) ) = €1 O6% (x = ¥)0im
= e Oz — ) (1.5)

substituting back we find:

(aA @V X A(y)) -V x A( ) = (04, V X A(y))' (VE) x A(2))!
= e 05 (x — y)el 05 Ap(2) = (Gmjoin — ki) O 6% (x — 3017 Ay (2)

mzm

— OWE (x — y)0) Ay(2) — O (x — y)0) Apn(2) (1.6)

Therefore we simplifies numerator in Eq. 1.4




() 53 (x (@) A () AW 3y (2)
04, 1= o [ [ dpyas, 20X =) Ai2) = O 6 (x = y)O” Am(2)
(@) F —_

= 2&//d3yd3253 x —y)0¥) A;(2)0W !

ly —z|?
— 3,,13.53 (=) (v) 1
= -2k dyd’z6°(x — y)0;” Ay (2) 0} "
-2 Byd®263(x — (Z)A (2) 1 3, 13,53 (2) (2) 1
K yd’26"(x — )0y, Ai(2) 0y v — P + 2k dyd’26°(x — y)0;” A (2)0) T

—2/1/d328,gf)Ai(z)87(,f) +2n/d326i( )Am(z)a(z) !

x — 2f? —

2% / 2000 Ay(z)—— — 2% / 200 A (2)—

x—2f? x — 2]?

o [ 0, L) 0T - Ate)

[x — 22

(1.7)

Where I used

1 1
3 z _ 3 z) 9z
/d ) A0 e = —/d DO A~
320 Ay (2)0D) —— 1 __/ 3,9() 9(?) L
/d 20, L — d’z0,70; Am(z)‘x_z‘2

by assuming A(z) is falls off quickly at infinity.

Finally,

[ #2001, P O F)
2

2 z P
2 / A / 2ty Y Ai) — 07 (VE) - Al) VO Aily) — 0P (VY - A)

x — 2 x—y[?

= 4&2/d3zd3y <V(Z)2Ai(z) — 81-(2)(V(z) : A(z)))

) d3x
< (V9" Aty) o (v Ay)) [ = 22fx — y[?




using 3rd hint,

e
.
”//

d3zd3y
ly — Z\
d3zd3
ly — Z\
d3z2d3y 5
!y - Z\ %

(VO 4:(2) = 97 (V- A(2))) (VO

— 4Kk*m® / /

A(z) VD" Ai(y)

Aq(z )v(y) Ay(

(V.
+ 4Kk?m

doing integration by parts,

Ay v

= +4/127r3//d3zd3yAi(z)V(y 2

ly

— 4&2773//d3zd3yAi(z)8i(y)(V(y) -A(y)V(Z)2

4n2w3//d3zd3y,4 Yo (v . A(z)v®?

A(2) (VY - A(y))

+4f<;2773//d3zd3y(v

using 1st and 5th hints,

= +4/<627T3//d3zd3yAi(z)V(y)2Ai(y) (—47753(y

27r3//d32:d3yAi(z)8(

—4/127r3//d3zd3yAi(y)8l-(z)(V(Z) .

+ 4K273 / / P2dPy(VE) - A(2)) (VY - A(y)) (4n63(y —

= —16/127r4/dSyAi(y)V(y)2Ai(y)
+16eat [ i)l (70 Awy))
r1oent [yl (70 Awy))

+ 16n2w4/d3y(v(y> CA(Y)(VWY - Afy).

Organizing terms, we find:

d32d3
ly — Z|

8(2)8(9)

(VW Aly) (—4rd®(y

A(z) (—4rs3(y —

“Aily) - 0 (VY - A(y)))

~(z)8§y)(v(y) “A(y))

1
— z|
1

ly — 2
1

ly — 2

1
ly — 2|

~z))

~ z))
z))
2))

(1.8)




= —|—16/<;27r4/d?’yajz‘li(y)ain(y)
—32R2W4/d3yaiAi(y)8jAj(y)

+ 16K27* / d’yd; A (y)diAi(y)

= 16/@27r4/d3y (ain(y)ain(y) - 8iAi(y)3jAj(y))

I used the 1st hint explicitly for computing

1 —
ly — 2

1
=483 (y — 2).

a(z)a(y)
ly — 2|

) )

(2502

Meanwhile, simplifying |V x A|? term in Hamiltonian, we find:
/dsl"V X A(X)‘2 = /d?’xeijkajAkeimnamAn
/ B2 (8jmOkn — 0nOkm)0j ArpOm Ay

_ / B2(0; Ai(2)0; Ai(x) — 8 Ai ()04, ().

Therefore, equating coefficient of these two terms, we find:

h?c? 1
- 7016nz7r4+§ =0
N 1
T he

(1.9)
(1.10)

(1.11)

(1.12)

(1.13)

Note that negative solution for x is corresponding to exponentially growing answer.




