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Vector field decomposition I

Given the definitions in lecture of vL and vT , for a general vector field v in three
dimensions (no boundaries), show that ∇× vL = 0 and ∇ · vT = 0.

For curl of v,

∇× vL = −∇×
(
∇
(∫

d3x′
∇ · v

4π|x− x′|

))
= 0 (1.1)

since ∇× (∇f) = 0 for any arbitrary function f .
For divergence of vT we have

∇ · vT = ∇ · v +∇ ·
(
∇
(∫

d3x′
∇x′ · v

4π|x− x′|

))
= ∇ · v +∇2

x

(∫
d3x′

∇x′ · v
4π|x− x′|

)
=

= ∇ · v +

∫
d3x′ (∇x′ · v)∇2

x

1

4π|x− x′|

= ∇ · v +

∫
d3x′ (∇x′ · v)

(
−δ3(x− x′)

)
= 0 (1.2)

So we showed both ∇× vL = 0, ∇ · vT = 0.

Vector field decomposition II

The figure below shows one period of the following periodic vector field in two dimen-
sions:

v = (vx, vy) = (cosx sin2 y,− cos y sin2 x).

Notice that this field has both non-vanishing divergence and non-vanishing circulation:
it is neither transverse nor longitudinal.

In this problem you will use the discrete Fourier transform to numerically perform the
decomposition v = vT + vL into transverse and longitudinal fields. If you do not have
access to, or experience with, software for computing FFTs or rendering vector fields,
team up with someone who does.
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The first step is to choose the grid dimension N . The grid points x have integer
coordinates that run from 0 to N − 1. Next, compute the 2D FFTs of vx and vy,
sampled on this grid. We can write the relationship between the two representations
of the vector fields as follows,

v(x) =
1(√
N
)2 ∑

k

ei2π(k·x)/N ṽ(k), (1.3)

where the sum is over another 2D grid of points k with integer coordinates. This grid
also has size N × N because the phase factor is unchanged when any multiple of N
is added to a component of k. However, the choice of k will affect the decomposition
into transverse and longitudinal. As an extreme case consider the k’s (1, 0) and (−1, 0).
Both of these correspond to the smallest possible spatial variation on the grid. However,
the second of these is equivalent to (N−1, 0) — a very large spatial variation that would
only be noticed if one could sample between the integer points x. To get the correct
continuum limit from our grid samples we should always choose the k with the smallest
magnitude. In practice this means each component of k runs as 0, 1, 2, . . . ,−2,−1
instead of 0, 1, 2, . . . , N − 2, N − 1.

The longitudinal and transverse projections of ṽ are defined by:

ṽL(k) = (ṽ(k) · k̂) k̂

ṽT(k) = ṽ(k)− (ṽ(k) · k̂) k̂.

By replacing ṽ in (1) with ṽL, the resulting vector field will be a superposition of
waves whose polarization is always parallel to the direction of propagation (k̂); the
perpendicular relationship holds when we use ṽT instead. The last step is therefore to
undo the earlier FFTs after making these replacements, thus producing the vector fields
vL and vT. Make plots to visually confirm the curl-free and divergence-free properties.
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Solution due to Chris Wilson and Daniel Longenecker. See the
attached Mathematica file for a sample code.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 1: vL
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Figure 2: vT
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Figure 3: vT + vL
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Fields produced by a current sheet

The current density in an infinite sheet has the form

J(x, t) = cσδ(z) cos kx cosωt ŷ,

and the charge density ρ vanishes everywhere at all times (the constant σ has units of
surface charge density).

1. Is charge conserved? Is the current density everywhere transverse?

Using local form of charge conservation

∂ρ

∂t
+∇ · J = 0 (2.4)

and checking divergence of current, we have

∇ · J =
∂

∂y
(cσδ(z) cos kx cosωt) = 0 (2.5)

That means it’s consistent with considering ρ = 0 everywhere and charge
conservation tells us if ρ = 0 initially, it will remain zero in later times.

2. Calculate E(x, t) and B(x, t) everywhere in space and time; consider separately
the cases ω < ck and ω > ck. Hint: first argue that

A(x, t) = Re
(
f(z)e−iωt

)
cos kx ŷ

is a valid expression for the vector potential in this problem.

In transverse gauge, Maxwell equation for A has the form

−∇2A +
1

c2
∂2A

∂t2
=

4π

c
JT (2.6)

Since ρ = 0, we can assume V = 0 throughout the space and time. This in
particular implies ∇ · A = 0. J is in ŷ direction, so A is also pointing in
the same direction ŷ. Also because A is divergenceless, there should be no
y-dependence in Ay. In addition, knowing the fact that A can be generally
written in terms of combination of retarded and advanced solution in terms
of J, one can argue x dependence should be in a form of cos kx. This leads
to the guess that the vector potential has the form

A = Re
(
f(z)e−iωt

)
cos kx ŷ. (2.7)
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Note that since J is real, we can write it as Re
(
cδ(z) cos kxe−iωt

)
.

Now by inserting into Maxwell equation 2.6 and removing real parts from
both side (remember in general Re(z1z2) 6= Re(z1)Re(z2) ), one finds

f ′′(z) + (
ω2

c2
− k2)f(z) = −4πσδ(z) (2.8)

There are different ways to solve this equation, one can use Fourier transfor-
mation and picking correct poles in order to find outgoing radiation. Here
we use the simplest approach, resembling solving Schrodinger equation in
1-dimension with δ-function potential.

(a) k ≥ ω/c:

General solution for eq. 2.8 is given by:

f(z) = AeQz +Be−Qz (2.9)

Where Q =
√
k2 − ω2

c2
. Because of delta function at origin, we need to

separate solution above and below the sheet of current:

f(z) =

{
Aexp(Qz) +Bexp(−Qz) z > 0
Cexp(Qz) +Dexp(−Qz) z < 0

(2.10)

Due to δ-function at the origin, there is a discontinuity in f ′(z) resulting
from integrating 2.8 in small vicinity of origin, though the function itself is
continuous at the origin. Combining these and demanding that function
decays very far away we find

A = 0 D = 0 decaying far away

C = B continuity at origin

−BQ− CQ = −4πσ ⇒ B =
2πσ

Q
discontinuity of f ′

(2.11)

Thus, the function f can be written as following

f(z) =
2πσ

Q
e−Q|z| (2.12)

Finally we can write the solution for the vector potential as
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A = Re(
2πσ

Q
e−Q|z|e−iωt) cos kx ŷ =

2πσ

Q
e−Q|z| cosωt cos kx ŷ (2.13)

Having the vector potential, it is easy to find electric field E and magentic
field B:

E = −∇V − 1

c

∂A

∂t
= −1

c

∂A

∂t
=

2πσω

Qc
e−Q|z| sinωt cos kx ŷ

B = ∇×A = ∂xAyẑ− ∂zAyx̂

=
2πσ

Q
e−Q|z| cos(ωt) [−k sin kxẑ +Q sgn(z) cos kxx̂] (2.14)

In which

sgn(z) =

{
1 x > 0
−1 x < 0

(2.15)

(b) k ≤ ω/c:

Steps are very similar to case that k ≥ ω/c. In this case, general solution
for f is given by

f(z) = Aeiqz +Be−iqz (2.16)

where q =
√

ω2

c2
− k2. Again, by separating solution for positive and

negative z, we have

f(z) =

{
Aeiqz +Be−iqz z > 0
Ceiqz +De−iqz z < 0

(2.17)

We’re imposing the condition that B = C = 0. This is the same condition
as demanding all radiation is outgoing from the sheet of current through
infinity. In other words, we’re picking only retarded solutions and setting
radiation coming from infinity to zero.
The relation between A and D is determined again by continuity of f
and discontinuity of f ′.

A = D continuity of f(z)

A(iq)−D(−iq) = −4πσ discontinuity of f(z)

A = D =
2πiσ

q

f(z) =
2πiσ

q
eiq|z| (2.18)
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Thus, the vector potential is given by

A = Re

(
2πiσ

q
eiq|z|e−iωt

)
cos kx y =

2πσ

q
sin(ωt− q|z|) cos kx ŷ

(2.19)

Therefore electric field and magnetic fields are given by

E = −1

c

∂A

∂t
= −2πσω

qc
cos(ωt− q|z|) cos kx ŷ

B = ∇×A = ∂xAyẑ− ∂zAyx̂

=
2πσ

q
[−k sin kx sin(ωt− q|z|)ẑ + q cos kx sgn(z) cos(ωt− q|z|)x̂]

(2.20)

3. Calculate the time-averaged power radiated by the sheet per unit area of the sheet.

Power per area is given by Poynting vector S

S =
c

4π
E×B = (2.21)

dP = 2S · (dAẑ) (2.22)

where factor of 2 is due to two side of the sheet.

(a) k > ω/c:

dP

dA
=

c

4π

(2πσ)2ω

Q2c
e−2Q|z| sinωt cosωt cos kx [−k sin kx x̂−Q cos kx ẑ]

(2.23)

Thus it’s easy to see the time averaged power radiated by the sheet is
zero:

〈dP
dA
〉t = 〈sinωt cosωt〉t

c

4π

(2πσ)2ω

Q2c
e−2Q|z| cos kx [−k sin kx x̂−Q cos kx ẑ] = 0

since 〈sinωt cosωt〉t = 0 (2.24)

This should be intuitive since going to very far away, there is no electric
field and magnetic field and that means power radiated to infinity should
be on average zero.
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(b) k < ω/c:

S = − c

4π

(2πσ)2ω

q2c
cos(ωt− q|z|) cos kx

× [−k sin kx sin(ωt− q|z|)x̂− q cos kxsgn(z) cos(ωt− q|z|)ẑ] (2.25)

dP

dA
= − 2πσ2ω

ω2/c2 − k2
cos(q|z| − ωt) cos kx [−q cos kx cos(q|z| − ωt)]

=
2πσ2ω√
ω2/c2 − k2

cos2(q|z| − ωt) cos2 kx (2.26)

〈dP
dA
〉t =

2πσ2ω)√
ω2/c2 − k2

cos2(kx)〈cos2(q|z| − ωt)〉t =
πσ2(ω/c)√
ω2/c2 − k2

cos2(kx)

(2.27)

If we further take average spatially over x-direction, we find:

〈dP
dA
〉t,x =

πσ2ω

2
√
ω2/c2 − k2

(2.28)

where I used the following relation:

〈cos2 ωt〉t =
1

T

∫ ∞
0

dt cos2(ωt) =
1

2
(2.29)

where T = 2π/ω is the period of oscillation.
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