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4.1 Electrostatics in a rectangular wave-guide

A grounded conducting waveguide has rectangular cross-section in the x− y plane and
infinite extent in z:

The x and y dimensions of the waveguide are respectively a and b.

1. Find the electrostatic Green’s function for this problem, G(x, y, z;x′, y′, z′), where (most
generally) 0 ≤ x ≤ a ,0 ≤ y ≤ b and 0 ≤ x′ ≤ a, 0 ≤ y′ ≤ b. The boundary condition
on G is that it vanishes when the field point (x, y, z) lies on the waveguide.

Solution due to Dylan Cromer

We want to construct the Green’s function for the (negative) Laplace operator with
the boundary conditions set by this system. We require the Green’s function to
vanish at the x and y boundaries of the waveguide. As mentioned in lecture, if we
have a linear differential operator D, whise eigenfunctions are un (each satisfying
the boundary conditions) and eigenspectrum λn, we can construct the Green’s
function by

G(x, x′) =
∑
n

un(x)u†n(x′)

λn
(1.1)
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This follows from the completeness of the D eigenbasis. To construct the Green’s
function in this problem, we will make use of our knowledge of the spectrum of
the Laplacian. From the boundary conditions in x, our eigenfunctions u will have
x dependence given by:

√
2

a
sin
(nπx

a

)
,

and similarly for y:

√
2

b
sin
(mπy

b

)
.

Since the z direction is unrestricted, we require a continuous wavenumber k:

eikz.

From this, the entire eigenfunction will be

2√
ab

sin(q1x) sin(q2y)eikz (1.2)

Where q1 = nπ
a and q2 = πm

b . Thus the eigenfunctions must be labeled by n,m and
k. We will then have two sums and an integral constituting the Green’s function.
Note that the negative Laplacian, −∂2

x−∂2
y−∂2

z will produce eigenvalues k2+q2
1+q2

2.
Finally, the Green’s function is given by

G(~x, ~x′) =
∞∑

m,n=1

∫ +∞

−∞

dk

2π

4

ab

sin(q1x) sin(q1x
′) sin(q2y) sin(q2y

′)eikze−ikz
′

k2 + q2
1 + q2

2

(1.3)

We can rewrite this a bit more schematically, giving

G(~x, ~x′) =
4

ab

∑
n,m

sin(q1x) sin(q1x
′) sin(q2y) sin(q2y

′)

∫
dk

2π

eik(z−z′)

k2 + q2
1 + q2

2

(1.4)

The integral over k is susceptible to complex contour integration, so let’s focus on
that for now. We can rewrite it as∫

dk

2π

eik(∆z)

k2 +Q2
(1.5)
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where Q2 = q2
1 + q2

2 and ∆z = z− z′. If we expand k2 +Q2 = (k− iQ)(k+ iQ), we
see there are two poles, one at k = iQ and another at k = −iQ. For ∆z > 0, we
want to close the contour in the positive imaginary half-plane to keep the integral
regular, and we get

∫
dk

2π

1

k − iQ
eik∆z

k + iQ
=

2πi

2π

(
ei(−iQ∆z)

iQ+ iQ

)
=

1

2

eQ∆z

Q
(1.6)

Thus the result for any ∆z is

1

2

e−Q|∆z|

Q
=

1

2

e−
√

(nπ
a

)2+(mπ
b

)2|z−z′|√
(nπa )2 + (mπb )2

(1.7)

Putting this together, we get the Green’s function as two infinite sums:

G(~x, ~x′) =
2

ab

∑
n,m

sin(
nπx

a
) sin(

nπx′

a
) sin(

mπy

b
) sin(

mπy′

b
)
e−
√

(nπ
a

)2+(mπ
b

)2|z−z′|√
(nπa )2 + (mπb )2

(1.8)

2. What is the leading asymptotic behavior of the potential at (x, y, z) due to a point
charge q at (x′, y′, 0) in the limit |z| → ∞?

If we put a point-charge at ~x′ = (x′, y′, 0), then the potential obeys this Poisson’s
equation:

−∇2Φ(~x) = 4πqδ3(~x− ~x′). (1.9)

So when we convolve G with the density to obtain a solution, we will be integrating
over a δ function and simply replace the variable ~x′ coordinate with the fixed one
at the location of the point charge, and multiply by q. Thus, the potential is given
by

Φ(~x) =
8πq

ab

∑
n,m

sin(
nπx

a
) sin(

nπx′

a
) sin(

mπy

b
) sin(

mπy′

b
)
e−
√

(nπ
a

)2+(mπ
b

)2|z−z′|√
(nπa )2 + (mπb )2

(1.10)

To approximate this value at z � 1, we (as in the lecture) note that the exponential
is

3



exp

(
−π
√
n2

a2
+
m2

b2
|z|

)
. (1.11)

This exponentially decays for large |z|, and decays slowest for the n,m = 1 term
of the sums. Further terms in the sum decay even faster, so we can approximate
the potential at large |z| by only taking the first term of the sum:

Φ(~x) =
8q√
a2 + b2

sin(
πx

a
) sin(

πx′

a
) sin(

πy

b
) sin(

πy′

b
)e−

π
ab

√
a2+b2|z| (1.12)

4.2 Spheres in D-dimensions

In D-dimensional spherical coordinates the volume element is written as

dDx =
(
rD−1dr

) (
dD−1ΩD−1

)
, (2.13)

where the last factor is the (D − 1)-dimensional colume element on the unit sphere in D-
dimensions.

1. Make a schematic drawing to illustrate the following recursion relation on spherical
volume elements:

dDΩD = (sin θD−1)D−1dθD−1(dD−1ΩD−1) (2.14)

As it is shown in figure 1, the area corresponding to dDΩD is equal to :

dSD = RDdDΩD = (Rdθ) dSD−1 = (Rdθ)
(
(R sin θ)D−1dD−1ΩD−1

)
= RD sinD−1 θdθdD−1ΩD−1

⇒ dDΩD = (sin θD−1)D−1 dθD−1

(
dD−1ΩD−1

)
(2.15)
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Figure 1

2. How is d1Ω1 more commonly written?

The lowest dimensional unit sphere is 1-sphere, a unit circle. So, the volume
element is just measuring angles on a unit circle:

d1Ω1 = dφ (2.16)

In which φ ∈ (0, 2π].

3. Check that the recursion relation correctly gives d2Ω2 and calculate the surface area of
the unit sphere in four dimensions by

A4 =

∫
d3Ω3 (2.17)

Using 2.15, we have

d2Ω2 = sin θdθdφ (2.18)

Which is in fact familiar area element in spherical coordinates for 2-sphere.
Surface area of the unit sphere in four dimension is given by

A4 =

∫
d3Ω3 =

∫ π

0

∫ π

0

∫ 2π

0
sin2 θ2 sin θ1dθ2dθ1dφ = 2π2 (2.19)
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A comment about domain of integration

A unit D-sphere is defined by following equation in D+1 dimension ~X =
(X1, X2, · · · , XD+1) ∈ RD+1.

X2
1 +X2

2 + · · ·X2
D+1 = 1 (2.20)

knowing parametrization of 2-sphere, we can generalize it to D-sphere:

XD+1 = cos θD−1 XD = sin θD−1 cos θD−2

XD−1 = sin θD−1 sin θD−2 cos θD−3 · · · X2 = sin θD−1 sin θD−2 · · · sin θ1 cosφ

X1 = sin θD−1 sin θD−2 · · · sin θ1 sinφ (2.21)

One can check this indeed solves the defining equation for the D-sphere. We now
want to determine the range of variables (θD−1, θD−2, · · · , θ1, φ). We didn’t call
that last variables θ0 since its range is different from other coordinates. All other
variables θi ∈ (0, π), while φ ∈ (0, 2π]. The situation is reminiscent of 2-sphere in
which θ ∈ (0, π), φ ∈ (0, 2π]. The basic reason is this range of variables are enough
to cover sphere once in a smooth way (except at poles). The reason that we don’t
have to consider θi ≥ π is the following:

X(θD−1, θD−2, · · · , θ1 + π, φ) = X(θD−1, θD−2, · · · , π − θ1, φ+ π)

X(θD−1, θD−2, · · · , θ2 + π, θ1, φ) = X(θD−1, θD−2, · · · , π − θ2, π − θ1, φ+ π)

· · · · · ·
X(θD−1 + π, θD−2, · · · , θ2, θ1, φ) = X(π − θD−1, π − θD−2, · · · , π − θ2, π − θ1, φ+ π)

(2.22)

In which X(θD−1, θD−2, · · · , θ1, φ) is determining a point on sphere parametrized
by (θD−1, θD−2, · · · , θ1, φ). This shows, like 2-sphere, when θi ≥ π, we can get to
the same point by changing other angles, in particular φ → φ + π and this range
of variables is enough to cover the whole sphere.

4. Obtain a general formula for AD by evaluating the integral

∫
dDxe−x·x, (2.23)

first in spherical coordinates and then in Cartesian coordinates and comparing the
results. Useful fact:

∫ ∞
0

tz−1e−tdt = Γ(z) (gamma function). (2.24)
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Let’s try to evaluate the following integral

∫
dDxe−x·x =

∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞
dx1dx2 · · · dxDe−x

2
1−x22−···x2D (2.25)

knowing the answer for Gaussian integral
∫ +∞
−∞ dxe−x

2
=
√
π, we find:

∫
dDxe−x·x = πD/2 (2.26)

On the other hand, we can evaulate the same integral in spherical coordinates:

∫
dDxe−x·x =

∫ +∞

0
rD−1dr

∫
dΩD−1e

−r2 = AD

∫ +∞

0
drrD−1e−r

2
=

AD

∫ +∞

0
e−t t

D−1
2

(
dt

2t1/2

)
=
AD
2

∫ +∞

0
tD/2−1e−tdt =

AD
2

Γ(
D

2
)

AD =
2πD/2

Γ(D/2)
(2.27)

In which I used change of variable t ≡ r2. Thus, the area for (D-1)-dimensional
unit sphere is given by

AD =
2π

D
2

Γ(D2 )
(2.28)

5. A ball of radius 1/2 fits snugly in a 1× 1×· · ·× 1 box in 10 dimensions. What fraction
of the box is empty?

The volume of box is equal to 1. So, in order to find the fraction that is empty in
the box, we need to find volume of 10-dimensional sphere with radius 1/2:

VD =

∫ R

0
ADr

D−1dr = AD
RD

D

⇒ V10 =
1

10

(
1

2

)10 2π5

Γ(5)
=

π5

122880
∼ 2.49× 10−3. (2.29)
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That means the portion of the box which is empty equals to

1− V = 0.99651 (2.30)
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