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2.1 Conformally invariant knot energy

In an effort to find the simplest shape for a given knotted topology of a loop of string,
mathematicians have considered minimizing an energy model where all pairs of line elements
dr1 and dr2 of the string interact ‘electrostatically’:

dU =
|dr1| |dr2|
|r1 − r2|2

(1.1)

E&M was never their strong suit, so we forgive them the exponent 2 in their Coulomb’s law!
The total energy has the form of a double integral:

U =

∮
ds

∮
dt

(
|ṙ(s)| |ṙ(t)|
|r(s)− r(t)|2

− 1

(s− t)2

)
. (1.2)

The second term in the integrand, which does not depend on the shape of the knot, is needed
to make the expression finite. As physicists we admire the fact that this U is invariant with
respect to translations and rotations of the knot. And thanks to that exponent 2, we see
that it is even invariant with respect to changes in scale. Show that invariance extends to all
elements of the group of conformal transformations by verifying it for Kelvin inversions.

We need to verify that the integrand is invariant under inversions:

r→ r′ =
r

r · r

ṙ′(t) =
ṙ(t)

r(t) · r(t)
− 2r(t) [r(t) · ṙ(t)]

(r(t) · r(t))2

|ṙ′(t)|2 =
ṙ(t) · ṙ(t)

(r · r)2
+

4(ṙ · r)2

(r · r)3
− 4(ṙ · r)2

(r · r)3
=

ṙ(t) · ṙ(t)

(r · r)2

(1.3)

Also for denominator goes as:

r(s)− r(t)→ r(s)

r(s) · r(s)
− r(t)

r(t) · r(t)
(1.4)

⇒ |r(s)− r(t)|2 → 1

r(s) · r(s)
+

1

r(t) · r(t)
− 2r(s) · r(t)

r(t) · r(t)r(s) · r(s)

=
(r(s)− r(t))2

r(t) · r(t)r(s) · r(s)
(1.5)

Note that using this equation, we can find again (1.3) by setting t→ s+ δs and taking
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the limit.
Combining these two result, we find invariance of the total energy:

|ṙ(s)| |ṙ(t)|
|r(s)− r(t)|2

→
|ṙ(s)|
r2(s)

|ṙ(t)|
r2(t)

|r(s)−r(t)|2
r2(t)r2(s)

=
|ṙ(s)| |ṙ(t)|
|r(s)− r(t)|2

(1.6)

Which shows invariance under inversion at origin.

2.2Contacting conducting spheres

Two identical conducting spheres of radius r make electrical contact and together carry
net charge Q. The spheres are initially at rest. When released, they fly apart in opposite
directions, each carrying charge Q/2. What value does the net kinetic energy approach as
the distance between the spheres grows large? Ignore gravity and energy loss due to radiation
and friction. Hint: use Kelvin inversion.

We can use energy conservation to find final kinetic energy provided that we know
initial potential energy when spheres are in contact with each other. More explicitly,

U0 =
Q2

2C0
= Knet + Uf = K + 2

(Q/2)2

2Csphere
Csphere = r (2.1)

In which the fact that final potential energy is the sum of each sphere potential energy
is assumed when the distance between them is very large. This means finally we can
ignore their interactions. So the problem boils down to finding capacitance of initial
charge distribution:

Figure 1: Blue circle is the circle of inversion

We can find capacitance by considering infinite image charges inside each sphere,
however, using Kelvin inversion, the geometry of charge distribution will be very simple.
The surface of each sphere is mapped to infinite plane, showed in figure 2, and inside
each sphere is mapped to inside of infinite sheets, extending to infinity. The region which
is outside of spheres is mapped to the white region, inside infinite planes.
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Note that inversion won’t keep the potential constant, therefore equipotential sur-
faces or conductors are not mapped to equipotential surfaces. More explicitly, if we
consider a point P , shown in figure 2 with potential V which is the potential of conduc-
tor, is mapped under inversion to the point P ′, with potential V ′, then we have

OP OP ′ = (2r)2
V ′

V
=

2r

OP ′
=
OP

2r
(2.2)

Figure 2: inside conductors are mapped to gray regions. OP ′ is in the same direction
as OP .

This means the potential due to charges on the surface of each plate is just given
by 2V r

OP ′ which is exactly the potential due to a point-charge at the origin. We want to
guess what kind of charge distribution on the plates can generate this potential. It’s not
hard to see that this is just the same charge distribution when we’re placing a charge
q′ = −2V r in front of two infinite conductors which have zero potential. Because for this
latter problem, the potential produced by charges on the plates should cancel potential
due to point charge at point P ′ which is just q′

OP ′ . However, we know how to solve the
problem of a point-charge in front of two infinite conducting sheets. This consists of
placing infinite image charges with alternating signs as it’s shown in figure 3.

Figure 3

We also know from the example of point charge in front of spheres solved in class,
that a point-charge q at point R is mapped to a point charge q′ at point R′ in the
following way:

q′

q
= −2r

R′
=
R

2r
(2.3)
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Again be careful about charges when you do Kelvin inversion. There is no relation
between total charges, however, for each point charge (2.3) holds. Combining these
facts, we can find total charge on each capacitor in terms of q′ = 2V r:

Q/2 = −2r

4r
(−q′) +

2r

8r
(−q′)− 2r

12r
(−q′) + · · · (2.4)

=
q′

2
(1− 1

2
+

1

3
− 1

4
+ · · · ) =

q′

2
log 2 = V r log 2 (2.5)

This immediately gives the capacitance for the system:

C = 2r log 2 ≈ 1.38r (2.6)

Keach =
Q2

2r
(
1− log 2

4 log 2
) (2.7)

Note that capacitance for the system is bigger than capacitance of a single sphere (should
we expect this?), and smaller than capacitance of two identical spheres with the same
radius connected with thin wire, when they are far away from each other.

2.3Mapping the square, conformally, to the rectangle

Consider conformal maps that send the interior of a square to the interior of a rectangle,
and also preserve vertical and horizontal mirrors.

1. First explain why the following (scaling just the x-coordinate) is not conformal:

It’s obvious from the figure that if we consider any of diagonal lines with horizontal
line, after conformal transformations the angle between these curves won’t be 45
and will change, hence this can’t be a conformal transformations.

2. Make a sketch of the true conformal map (one that preserves mirrors).

This is a sketch of conformal transformation that can map square to rectangle.
Schwarz-Christoffel mapping is telling us how to construct such a map explicitly
since Schwarz-Christoffel transformation maps upper half plane onto the interior
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of a simple polygon. For the purpose of this question, we should bear in mind
mapping is only preserving angles in the interior of two regions, but it can change
the angle of the boundaries since typically conformal transformations won’t be
regular at the boundary and theorem regarding preserving the angle by conformal
transformation won’t hold.

3. What 2D electrostatics problem is solved by this conformal map?

This is a application of this conformal transformation. By examing the picture
and figure 4, vertical lines in the square are now starting and ending on an interval
smaller than size of the rectangle. So we can think about this interval as parts of
system of periodic capacitors extended to infinity. Another way of thinking about
this is as we have a fluid and we put periodic blocks ahead of the stream of the
fluid.

Figure 4: Infinite series of parallel capacitors

2.4Exercise from The Lost Jackson Codex, Vol. XIV
Evaluate the following dimensionless double integral
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∮
C1

∮
C2

dr2 × (r1 − r2) · dr1
|r1 − r2|3

(4.1)

for the pair of closed curves C1 and C2 shown on the next page. The orientations are indicated
by arrows.
Hint: everybody knows that combining things, e.g. chocolate+ peanut-butter, can produce
great things. In this case, chocolate= Ampere, peanut-butter = Biot-Savart.

The double integral ∮
C1

∮
C2

dr2 × (r1 − r2) · dr1
|r1 − r2|3

(4.2)

Can be thought as integrating magnetic field, due to unit current I = 1 flowing in the
second loop, over the first loop. More explicitly, for a unit current the magnetic field is
given by:

B(r1) =
µ0
4π

∮
C2

dr2 × (r1 − r2)

|r1 − r2|3
(4.3)

Then, Ampere’s law tells us:

∮
C1

B(r1) · dr1 =

∫
D1

∇×B · ds =

∫
D1

µ0J(r1) · ds = −µ0
∫
D1

Jds = −µ0 (4.4)
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Where D1 is the interior of the region having C1 as its boundary. There is a minus sign
since the current density J and area element ds are in opposite direction when we used
right-hand rule for both determining positive cross product and defining positive area
element.
Hence,

∮
C1

∮
C2

dr2 × (r1 − r2) · dr1
|r1 − r2|3

=
4π

µ0

∮
C1

B(r1) · dr1 = −4π (4.5)
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