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5.1 Rigid body dynamics (continued)

While one of our goals is to describe the complex motions of rigid bodies in space, it turns out that a simpler
problem is to describe this motion as seen in the frame of the tumbling/rotating body itself! The equations
of motion in this frame are called the Euler rigid body equations. After we derive these equations and apply
them to the slight wobble of the Earth’s motion, we return to the actual problem of rigid motion as seen in
the space frame.

5.1.1 Rigid body motion from the body frame perspective

We start by writing the equation of the body’s angular momentum

L = I · ω, (5.1)

in terms of the special body-fixed basis, the principal basis. In this basis

I = I11̂1̂ + I22̂2̂ + I33̂3̂, (5.2)

and
ω = ω11̂ + ω22̂ + ω33̂. (5.3)

While the principal moments I1, I2 and I3 are time-independent by construction, the components ω1, ω2

and ω3 of the angular velocity do not have this property. Substituting these expressions into (5.1), we obtain

L = I1ω11̂ + I2ω22̂ + I3ω33̂. (5.4)

The dynamical basis of the equations of motion is the constancy of L in the absence of torques. We should
therefore take the time derivative of the right hand side of (5.4) and set it equal to zero. In addition to time
derivatives of the components, ω̇1, we also need to account for the time derivatives of the basis vectors:

˙̂1 = ω × 1̂ (5.5)

= (ω11̂ + ω22̂ + ω33̂) × 1̂ (5.6)

= ω32̂− ω23̂. (5.7)

Including both forms of time derivative we obtain

L̇ = 0 = I1ω̇11̂ + I2ω̇22̂ + I3ω̇33̂ + I1ω1(ω32̂− ω23̂) + I2ω2(ω13̂− ω31̂) + I3ω3(ω21̂− ω12̂). (5.8)
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This is really a set of three equations, since the net coefficient of each basis vector must vanish:

I1 ω̇1 = (I2 − I3)ω2ω3 (5.9)

I2 ω̇2 = (I3 − I1)ω3ω1 (5.10)

I3 ω̇3 = (I1 − I2)ω1ω2. (5.11)

This system of first-order, non-linear differential equations are called Euler’s rigid body equations.

We now have a mathematical procedure for determining the time evolution of the rigid body. Given any
angular momentum vector L of the body, and an arbitrary initial orientation as specified by 1̂, 2̂ and 3̂, the
initial components ω1(0), ω2(0) and ω3(0) are determined by (5.4). These are the initial conditions for the
Euler equations which give us ω1(t), ω2(t) and ω3(t) at future times.

5.1.2 Properties of the solutions to Euler’s equations

If you take the three Euler equations and add them together after multiplying them, respectively, by ω1, ω2

and ω3, the right hand side is zero. This is not a surprise because the sum of the left hand sides

ω1I1ω̇1 + ω2I2ω̇2 + ω3I3ω̇3 = 0, (5.12)

is the time derivative of the rotational kinetic energy Trot, a constant. This fact is a reminder to us that
however complicated the time evolution of ω may be, the three components of the angular velocity will
always lie on the surface of the energy ellipsoid
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The Euler equations for a spherical top are especially simple. A spherical top is a body with all principal
moments equal. From Euler’s equations we see that all three components of the angular velocity have
vanishing time derivatives when I1 = I2 = I3, or in symbols: ω̊ = 0. And since ω̊ = ω̇ is always true, ω̊ = 0
implies that the angular velocity vector of a spherical top is constant.

Now consider a general rigid body but the very special initial condition, where two of the principal compo-
nents of the angular velocity are exactly zero, say ω1(0) = ω2(0) = 0. Again we see (from Euler’s equations)
that all the right hand sides are zero, so that the evolution is trivial (two components stay zero and the third
is constant, not necessarily zero). However, we should always be cautious in physics when a certain conclu-
sion rests on something being “exactly zero”. The better approach in such situations is to use perturbation
analysis.

Suppose that ω1 and ω2 are both very small, though not necessarily zero. The third Euler equation then
tells us that the time derivative of ω3 is then even smaller, that is, of second order in the magnitudes of ω1

and ω2. At our first order level of approximation we may then approximate ω3 as a constant. The first two
Euler equations in that approximation reduce to linear equations. Taking the time derivative of the first,

I1ω̈1 ≈ (I2 − I3)ω̇2ω3, (5.14)

and substituting the time derivative of ω2 from the second equation,

I2I1ω̈1 ≈ (I2 − I3)(I3 − I1)ω2
3 ω1, (5.15)

we obtain a linear differential equation involving only ω1. For this equation to have stable (bounded) solutions
we need the factor (I2− I3)(I3− I1) to be negative, and this will be the case when I3 is either the smallest or
the largest principal moment. If instead I3 has a value between the other two, so (I2−I3)(I3−I1) is positive,
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then the solution will diverge exponentially no matter how small the initial conditions. In the stable case,
when (I2 − I3)(I3 − I1) is negative and ω1 is a bounded sinusoidal function, then the same holds true for
ω2 by the first Euler equation, which relates ω2 to the time derivative of ω1. Expanding this analysis to the
other three cases of special (and perturbed) initial conditions, we see that only two of the three cases will
be stable, where the unstable case corresponds to the axis whose moment is the one in the middle.

All the remarks above are on display in the following diagram showing the “orbits” of the ω evolution on
the energy ellipsoid:

Stable circular orbits surround the shortest and longest axes of the ellipsoid, corresponding to, respectively,
the largest and smallest principal moments.

Drawing exercise: Add axes labeled 1̂, 2̂ and 3̂ for the case I1 < I2 < I3. Add arrows to the orbits
showing the direction of the time evolution (use the Euler equations near the axes as a guide).

5.1.3 Systematic perturbation analysis of the Euler equations

To support the claim that the non-constant part of ω3 is small to second order, when ω1 and ω2 are small
to first order, we write

ω1(t) = ε a(t) + · · · (5.16)

ω2(t) = ε b(t) + · · · (5.17)

ω3(t) = c+ ε2 d(t) + · · · , (5.18)

where ε is a dimensionless small parameter and · · · denotes terms having higher powers of ε. To check the
consistency of this perturbation expansion, we substitute these expressions into the Euler equations keeping
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only lowest order terms:

ε I1 ȧ(t) = ε (I2 − I3)b(t)c (5.19)

ε I2 ḃ(t) = ε (I3 − I1)c a(t) (5.20)

ε2 I3 ḋ(t) = ε2 (I1 − I2)a(t)b(t). (5.21)

The first two equations for a(t) and b(t) are coupled and linear, and have sinusoidal (bounded) solutions
when (I2− I3)(I3− I1) is negative, as discussed earlier. From the third equation we see that d(t) is obtained
by integrating the product of the solutions a(t) and b(t). Finally, note that because a(t) and b(t) are always
90◦ degrees out of phase, their product is equally often positive as it is negative. Therefore, the integral of
their product, d(t), will also be sinusoidal and stay bounded.


