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4.1 Rigid body dynamics

In the previous lectures we did not concern ourselves with the cause behind a body having an angular velocity
ω, or why it is or is not constant in time. In those lectures we treated ω as imposed by some external agent
and worked out the kinematic consequences. Today we move beyond that limited perspective with the goal
of finding laws that explain the dynamics of ω. We know from freshman physics that ω can change with
time, both in magnitude and in direction, when there are torques. What you might find surprising is that
ω changes with time even when the rigid body is completely free of forces and torques! Those symmetrical
bodies and initial conditions you studied in freshman physics turn out to be the exception and are not
representative of what happens in general.

4.1.1 Kinetic energy of a rigid body

Our rigid body has center of mass R and is comprised of masses mi at points ri relative to R. These masses
are “fixed in the body” so their velocity relative to R is ω×ri. Taking into account the translational motion
of the center of mass itself, the net velocity of mi is

ṙi = Ṙ + ω × ri. (4.1)

From this we get the following expression for the total kinetic energy of the rigid body,

T =
1

2

∑
i

mi(ṙi · ṙi) (4.2)

=
1

2
M(Ṙ · Ṙ) +

1

2

∑
i

mi (ω × ri) · (ω × ri), (4.3)

where
M =

∑
i

mi (4.4)

is the total mass of the body and we have used the center of mass property

0 =
∑
i

miri (4.5)

to eliminate the cross term. The two terms of T are the translational and rotational kinetic energies of the
body. Not surprisingly, the two parts are described by independent variables and therefore have independent
dynamics. The rest of this lecture will focus on just the rotational part.
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Using vector identities we can rewrite the double cross product without any cross products at all:

(ω × ri) · ω × ri = ω · ri × (ω × ri) (4.6)

= ω · ((ri · ri)ω − (ri · ω)ri) (4.7)

= (ω · ω)(ri · ri) − (ω · ri)(ri · ω). (4.8)

The rotational kinetic energy of the rigid body now looks like this:

Trot =
1

2

∑
i

mi ((ω · ω)(ri · ri) − (ω · ri)(ri · ω)) . (4.9)

4.1.2 Moment of inertia tensor

The expression for Trot, a scalar, contains the angular velocity, a vector, twice. The mathematical entity
that combines with two vectors to form a scalar is called a tensor, or more precisely, a tensor of order 2.
One of the most basic tensors is the identity tensor

I = x̂x̂ + ŷŷ + ẑẑ. (4.10)

To understand the notation, and why this is the identity tensor, let’s form the dot product with the vector
ω on the right:

I · ω = x̂(x̂ · ω) + ŷ(ŷ · ω) + ẑ(ẑ · ω) (4.11)

= x̂ωx + ŷωy + ẑωz (4.12)

= ω. (4.13)

We get the same result when we form the dot product on the left. When we take dot products with two ω’s,
one on each side, we get a familiar scalar:

ω · I · ω = ω · ω. (4.14)

The identity tensor is not special to a specific choice of orthonormal basis, as the formula (4.10) might
suggest. We could just as well have defined it as

I = x̂′x̂′ + ŷ′ŷ′ + ẑ′ẑ′ (4.15)

for some other orthonormal basis. If you think of what is going on when you form a dot product with some
arbitrary vector, as in v · I, you will see why this is true. First the vector v is “analyzed” for its components
with respect to the arbitrary basis. The components are then combined with the corresponding (arbitrary)
basis vectors to give back the original vector.

We can express Trot as a double ω dot product with a tensor of order 2, the moment of inertia tensor :

Trot =
1

2
ω · I · ω, (4.16)

I =
∑
i

mi ((ri · ri)I − riri) . (4.17)

The first term in I is just a scalar multiple of the identity tensor. All the complications in rigid body motion
can be traced to the fact that, in general, I is no longer a multiple of the identity tensor when the second
term is included.
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In one of your homework problems, using many of the same manipulations that led to (4.16), you will show
that the angular momentum of the rigid body has the form

L = I · ω. (4.18)

From this we see that the two vectors, L and ω, are only parallel in the exceptional case where I is a multiple
of the identity tensor. To help us identify those exceptional cases, and sort things out otherwise, we will
write I in terms of a very special basis.

4.1.3 Principal axes

Let’s start by writing I in terms of an arbitrary basis fixed in the body. Omitting the primes we normally
reserve for body-fixed quantities, the positions of the masses are written as

ri = xix̂ + yiŷ + ziẑ. (4.19)

Substituting this into (4.17) we obtain

I = Ixx x̂x̂ + Ixy x̂ŷ + · · · , (4.20)

where

Ixx =
∑
i

mi(y
2
i + z2i ) (4.21)

Ixy =
∑
i

mi(−xiyi), (4.22)

and you should have no trouble writing down expressions for the seven other tensor components. Symmetry
properties, such as Ixy = Iyx, follow from the fact that I is unchanged when the pairs of vectors in its
construction are swapped.

To help us find a better basis we rewrite (4.20) using matrix notation:

I = [x̂ ŷ ẑ]

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 x̂
ŷ
ẑ

 . (4.23)

Now consider a new basis, obtained from the original basis by the application of an orthogonal matrix U (a
rotation):  x̂

ŷ
ẑ

 = U

 1̂

2̂

3̂

 , [x̂ ŷ ẑ] = [1̂ 2̂ 3̂] UT . (4.24)

The idea behind the curious numerical names for the transformed orthonormal basis vectors will be clear
later. Substituting these expressions into (4.23) we obtain the following matrix of tensor components in the
transformed basis:

UT

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

U. (4.25)

Because the middle matrix is symmetric, there exists a particular transformation U that makes the resulting
matrix diagonal:

UT

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

U =

 I1 0 0
0 I2 0
0 0 I3

 . (4.26)
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The diagonal elements are called the principal moments of inertia of the rigid body. In this special trans-
formed basis, called the principal basis, the moment of inertia tensor takes a very simple form:

I = I1 1̂1̂ + I2 2̂2̂ + I3 3̂3̂. (4.27)

From this you can see that a condition for I to be a multiple of the identity tensor is equality of all three
principal moments of inertia. The axes in the body defined by the basis vectors 1̂, 2̂ and 3̂ are called the
principal axes.

When a body has symmetry, the principal axes are symmetry axes of the body. As an example, consider
four equal masses m arranged at the corners of a rectangle of side length 2a and 2b. Choosing a basis where
two of the vectors are parallel to the rectangle edges, the positions of the four masses are:

r1 = a 1̂ + b 2̂ r2 = a 1̂− b 2̂ r3 = −a 1̂ + b 2̂ r4 = −a 1̂− b 2̂. (4.28)

Using these in the original tensor expression (4.17), we find∑
i

(ri · ri)I = 4(a2 + b2)(1̂1̂ + 2̂2̂ + 3̂3̂) (4.29)

∑
i

riri = (a 1̂ + b 2̂)(a 1̂ + b 2̂) + (a 1̂− b 2̂)(a 1̂− b 2̂) + · · · (4.30)

= 4a2 1̂1̂ + 4b2 2̂2̂. (4.31)

Subtracting the two parts we obtain a moment of inertia tensor of the form (4.27):

I = m
(
4b2 1̂1̂ + 4a2 2̂2̂ + 4(a2 + b2)3̂3̂

)
. (4.32)


