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39.1 Geometric action principles and relativity (continued)

39.1.1 Symmetries of the string-wave equation

In lecture 38 we observed that the Lagrangian for the world-surface

sα(x, t) = (ct , x , y(x, t) , 0) (39.1)

for a nearly straight string parameterized by x and t reduced to the Lagrangian of the simple elastic string
in the small y-amplitude limit. And because the action was defined as a Lorentz-invariant — the surface
area in Minkowski space-time — it was not surprising to find that the velocity of small amplitude wave
propagation was exactly the speed of light c.

In a homework assignment you were asked to obtain the equations of motion for the world-surface (39.1)
without making the small amplitude approximation. The resulting wave equation now includes cubic terms:

∂2xy − ∂2t y = (∂xy)2∂2t y − 2(∂xy)(∂ty)∂x∂ty + (∂ty)2∂2xy. (39.2)

To minimize clutter, in this equation and all remaining equations in this lecture, we have set c = 1 (in effect
using the same units for space and time). In the linear (small amplitude) approximation,

∂2xy − ∂2t y ≈ 0, (39.3)

this equation has many symmetries, including translation in space and time and Lorentz-transformations for
relative motion along x.

One symmetry that this equation does not have is rotational symmetry. For suppose we have an initial
string amplitude y(x, 0) and velocity ∂ty(x, 0) and time-evolved these with (39.3). If the equation possessed
rotational symmetry then we should be able to use the rotated-by-θ initial amplitude

y′(x, 0) = y(x, 0) cos θ + x sin θ, (39.4)

and a likewise rotated initial velocity, then time-evolve with (39.3) and thereby obtain a rotated version of the
original time evolution. But we know this cannot possibly be correct because (39.4) is not small-amplitude
unless θ = 0. On the other hand, we know the nonlinear equation (39.2) will give the correctly rotated time
evolution because it is derived from a geometric action that is invariant — among other things — under
rotations of the (x, y) plane. The fact that x and y have such different roles in the nonlinear equation —
independent vs. dependent variable — should not bother you. This is a casualty of using a particular spatial
axis, in this case x, for one of the arbitrary world-surface parameters.
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39.1.2 General solution of the equations for the relativistic string

Non-linearity, in particular the cubic terms in (39.2), seems like a high price to pay in order to have equations
that respect all the symmetries of a mechanical system! Fortunately, in the case of the relativistic string,
these non-linearities do not present an obstacle to constructing the most general solution.

The string action (without the scale factor),

S[s] =

∫
L dp dq, (39.5)

L =
√

(∂psα ∂qsα)2 − (∂psα ∂psα)(∂qsβ ∂qsβ), (39.6)

now in complete generality, suggests a possible simplification. Exercising our freedom to choose a parame-
terization, we get an enormous simplification when both tangent vectors are always null:

∂ps
α ∂psα = 0 ∂qs

α ∂qsα = 0. (39.7)

Supposing there exists such a parameterization, the action would reduce to the following:

S[s] =

∫
∂ps

α ∂qsα dp dq. (39.8)

However, before we derive equations of motion for this action, we need to ask how Hamilton’s principle
is affected by the constraints (39.7). Consider perturbing an arbitrary world-surface s? that has a “null-
parameterization”:

sα(p, q) = s?α(p, q) + δsα(p, q). (39.9)

Under this perturbation we have

(∂ps
α ∂psα)(∂qs

β ∂qsβ) = 4(∂ps
?α ∂pδsα)(∂qs

?β ∂qδsβ) +O
(
(δs)3

)
(39.10)

= O
(
(δs)2

)
, (39.11)

whereas

(∂ps
α ∂qsα)2 = (∂ps

?α ∂qs
?
α + ∂ps

?α ∂qδsα + ∂pδs
α ∂qs

?
α + · · · )2 (39.12)

= (∂ps
?α ∂qs

?
α)2 +O (δs) . (39.13)

The terms (39.10) missing from the simplified action (39.8) therefore only add terms of order (δs)2 under
the perturbation and imply we can impose the usual order (δs)1 extremal condition to (39.8).

The equations of motion

0 = ∂p

(
∂L′

∂(∂psα)

)
+ ∂q

(
∂L′

∂(∂qsα)

)
(39.14)

for the simplified Lagrangian
L′ = ∂ps

α ∂qsα (39.15)

are very simple:
0 = ∂p∂qs

α + ∂q∂ps
α = 2∂p∂qs

α . (39.16)

The most general solution is given by

sα(p, q) = fα(p) + gα(q), (39.17)

where by (39.7) the world-lines f(p) and g(q) are arbitrary null curves:

∂pf
α ∂pfα = 0 (39.18)

∂qg
α ∂qgα = 0. (39.19)



Lecture 39: May 10 39-3

39.1.3 Colliding waves on a relativistic string

A convenient way to parameterize general null curves is in terms of “particles” that are always moving with
the speed of light — though not necessarily along straight lines:

fα(p) = (p , f(p)) (39.20)

gα(q) = (q ,g(q)). (39.21)

Here f(p) and g(q) are general trajectories in space of particles moving at light-speed:

ḟ = u, |u| = 1, (39.22)

ġ = v, |v| = 1. (39.23)

Switching to parameters r = p− q and t = p+ q in the solution (39.17), we obtain the following expression
for the world-surface:

s0(r, t) = t, (39.24)

s(r, t) = f

(
t+ r

2

)
+ g

(
t− r

2

)
. (39.25)

The parameter t is therefore the time at which the string is observed and s(r, t) is the space curve traced
out by the string, at any t, as a function of a parameter r along its length.

To see evidence of non-linear characteristics in our sum-of-null-curves general solution, we consider a wave
scattering scenario. On an asymptotically straight string we place two wave forms moving in opposite
directions. Choosing the asymptotic string along the direction x̂, we require

lim
r→±∞

f

(
t+ r

2

)
+ g

(
t− r

2

)
= Cr x̂, (39.26)

where C is a constant. Taking the r-derivative of both sides,

lim
r→±∞

1

2
u

(
t+ r

2

)
− 1

2
v

(
t− r

2

)
= C x̂, (39.27)

we see there is a solution of the type we seek when the velocity u of one of the particles approaches +x̂ in
the distant past and future, while v of the other particle approaches −x̂ in the same limits (and C = 1).

When the 3-velocities are constant, in particular u(p) = +x̂ and v(p) = −x̂, then the string is always straight
and there are no waves. Deviating from these constant velocities over a finite parameter range (respectively
in p and q) produces finite wave-forms f and g (upon integrating respectively u and v) that move in opposite
directions by (39.25). Does anything interesting happen when the wave amplitudes are sufficiently large?

For insights on the collision process, let’s express the action in terms of the null curves:

S[s] =

∫
∂ps

α ∂qsα dp dq (39.28)

=

∫
∂pf

α ∂qgα dp dq (39.29)

=

∫
(−1 + ḟ · ġ)dp dq (39.30)

=

∫
(−1 + u · v)dp dq. (39.31)
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The vanishing of the Lagrangian, as we saw in lecture 35, corresponds to the string’s transverse velocity
having reached light-speed. This is as singular as a relativistic string can get, say as exhibited by the
oscillating circular string (lecture 36) at periodic instants of time. For this to happen with the colliding
wave forms, the 3-velocity u must deviate sufficiently from +x̂ (its asymptotic value), and v must deviate
sufficiently from −x̂, so that the condition u · v = 1 is achieved somewhere on the world-surface. This in
turn implies a minimum amplitude for the wave forms f and g.

Drawing exercise: Sketch a pair of velocity curves u(p) and v(q) on the unit sphere that have the asymp-
totic behavior discussed and also meet the condition u(p) · v(q) = 1 for particular parameter combinations.


