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37.1 Geometric action principles and relativity (continued)

37.1.1 Relativistic energy-momentum conservation

In non-relativistic mechanics we saw that conservation laws are consequences of continuous symmetries of
the system. We were able to define a conserved energy whenever the Lagrangian had no direct dependence
on time: the system Lagrangian was then invariant under arbitrary time-translations. Likewise, in systems
where the Cartesian coordinates are the degrees of freedom, the absence of these in the Lagrangian implies
that their conjugate momenta are conserved.

Revising the definitions of conservation laws to be consistent with special relativity presents some challenges.
The definitions of conjugate momentum and the Hamiltonian rely on the distinguished role of time in an
essential way — something that must be abandoned in a relativistic definition. At an even more basic level,
the very notion of “conservation law” has problems in a relativistic setting. The statement that the energy
of the system “before” is the same as it is “after” assumes a particular slicing of space-time into events that
are simultaneous at one time (before) and another (after). Different inertial observers will not agree on what
these slices of simultaneity should be, and a relativistic conservation law should reflect this ambiguity.

We will use the conservation of charge — a scalar quantity — to motivate a geometric and relativistically
consistent definition of energy-momentum. Gauss’ law relates the charge enclosed by a surface to the flux
of electric field through the surface. Suppose we have two concentric spheres, the innermost enclosing some
charge and no charges elsewhere in space. The flux through the inner sphere exactly matches the flux through
the outer sphere because there are no sources of flux between the spheres. Flux is “conserved” if we interpret
the inner sphere as “before” and the outer sphere as “after”.

Just as evidence of a conserved scalar charge Q is gained (in three dimensions) from the flux of the 3-vector
electric field E it generates, the four components of the energy-momentum 4-vector Pα can be inferred (in
four dimensions) from the flux of an entity Tαβ(x) with an additional index. We will construct such an
entity for particles and strings called the energy-momentum stress tensor density1. Just as “conservation” of
electric field (E) flux is implied by the vanishing of ∇·E — a local property, the conservation of stress-energy
(Tαβ) flux will follow from the vanishing 4-divergence

∂βT
αβ = 0. (37.1)

This local property, which avoids simultaneity/reference-frame ambiguity, is the more fundamental statement
of conservation; the more familiar conservation of energy-momentum is its most important consequence.

1The term “density” is often left out, because this tensor is only defined in that particular context.
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37.1.2 Energy-momentum stress tensor for particles

As we saw in the Noether construction of conserved quantities (lecture 17), the equations of motion play a
central role, as do continuous symmetries of the system Lagrangian. Recall the Lagrangian for a relativistic
particle:

S[r] = Mc

∫ √
−(∂prα)(∂prα) dp (37.2)

= Mc

∫
L(∂pr) dp. (37.3)

This Lagrangian is invariant under arbitrary translations of the system variables, rα(p) → rα(p) + aα,
because it only depends on the p-derivatives of r. The Euler-Lagrange equations therefore lack the first
(non-derivative) term:

0 = 0− ∂p
(

∂L
∂(∂prα)

)
. (37.4)

Now suppose we “attach” to all events of the world-line r(p) a delta-function density of zero-weight, where
“zero” is defined by the equations of motion (37.4) being satisfied (at all events along the world-line):

0 =

∫
−∂p

(
∂L

∂(∂prα)

)
δ4(x− r(p)) dp. (37.5)

This is a vector (upper index α) density (argument x) that happens to be identically zero by the equations
of motion. Performing an integration by parts we obtain

0 =

∫
∂L

∂(∂prα)
∂pδ

4(x− r(p)) dp (37.6)

=

∫
− ∂L
∂(∂prα)

(∂pr
β) ∂βδ

4(x− r(p)) dp, (37.7)

where we made use of an identity from lecture 34. Before we proceed, we should examine the boundary
terms we omitted in the integration by parts:

∂L
∂(∂prα)

δ4(x− r(p))
∣∣∣∣p2
p1

(37.8)

This vanishes provided we make x avoid the end-events of the world-line. A more physical statement of the
same thing is that our derivation only applies to stress-energy conservation at times x0/c between the times
r0(p1)/c and r0(p2)/c where the motion starts and stops (by unspecified mechanisms).

Note that (37.7) is a divergence, and in fact a divergence that vanishes (up to the endpoint restrictions).
Restoring the scale constant Mc, this defines the energy-momentum stress tensor density

Tαβ(x) = Mc

∫
− ∂L
∂(∂prα)

(∂pr
β)δ4(x− r(p)) dp (37.9)

= Mc

∫ (
∂pr

α

L

)
(∂pr

β)δ4(x− r(p)) dp (37.10)

= Mc

∫
uαuβ δ4(x− r(p)) (Ldp). (37.11)

Since Ldp is a length (c times proper time), and the 4-velocity uα is dimensionless, Tαβ(x) is a momentum
3-density: when integrated over a 3-volume it produces a momentum.
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37.1.3 Energy-momentum conservation

Stokes’ theorem applied to the integral of the 4-divergence (37.1) over a 4-volume V with boundary ∂V is
the statement,

0 =

∫
V

∂βT
αβ d4x =

∫
∂V

Tαβnβ d
3x. (37.12)

where nα is the outward-directed unit normal to ∂V . Let’s evaluate the surface integral for a space-time
4-cylinder comprising “before” and “after” ends — solid 3-spheres at times t1 and t2 — and a matching
spatial 2-sphere evolved between times t1 and t2. We will make the sphere sufficiently large that the particle
never strays outside V on the “spatial sides”. The only places on the boundary ∂V where Tαβ does not
vanish is the two fixed-time ends with normals

nα(t1) = (−1, 0, 0, 0), nα(t2) = (+1, 0, 0, 0) (37.13)

at the early (t1) and late (t2) times. Equation (37.12) then becomes

0 = Pα(t2)− Pα(t1), (37.14)

where

Pα(t1) =

∫
Tα0(ct1,x) d3x (37.15)

Pα(t2) =

∫
Tα0(ct2,x) d3x, (37.16)

and the space integrals are over the large solid 3-sphere. Although the tensor Tαβ is symmetric, in this
setting the first index is associated with the entity that is “flowing” and the second index defines the normal
3-surface through which the flux is being evaluated. We get a conventional conservation law when the latter
index is 0, because by (37.14) there is no change in the flux of Tα0 between the two times.

Using the standard parameterization by time of the particle world line (lecture 36), we can evaluate a
particle’s conserved stress-energy flux:

Pα(t1) = Mc

∫
d3x

∫
(Ldt)uαu0 δ(ct1 − r0(t)) δ3(x− r(t)) (37.17)

= Mc

∫
(Ldt)uαu0 δ(ct1 − r0(t)) (37.18)

= Mc (c/γ)uαγ

∫
dt δ(ct1 − ct) (37.19)

= Mcuα. (37.20)

As promised, this is the standard energy-momentum 4-vector of a particle. While there are less sophisti-
cated methods to derive the relativistic counterparts of energy and momentum, we will need this general
construction for calculating the energy and momentum of relativistic strings.


