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35.1 Geometric action principles and relativity (continued)

35.1.1 Relativistic string action

Before we derive equations of motion and conserved quantities for the particle action (lecture 34), we extend
our geometric construction to the string, where the world-line is replaced by a world-surface. As the calcu-
lation of surface area elements may not be as familiar as lengths of line elements, we recall how this is done
for area elements in ordinary three dimensional Euclidean space.

Consider a surface (in three dimensions) s(p, q) parameterized by p and q, and an element of surface defined
by the two (not necessarily orthogonal) tangent vectors

u(1) = ∂ps dp, u(2) = ∂qs dq. (35.1)

These form a parallelogram and using the cross product we can compute their squared area:

(Adp dq)2 = (u(1)× u(2)) · (u(1)× u(2)) (35.2)

= (u(1) · u(1)) (u(2) · u(2))− (u(1) · u(2)) (u(2) · u(1)) . (35.3)

For our surface s(p, q) in Minkowski space the tangent vectors are

u(1) = ∂ps dp, u(2) = ∂qs dq, (35.4)

and the area of the element is

(Adp dq)2 = uα(1)uα(1)uβ(2)uβ(2)− uα(1)uα(2)uβ(2)uβ(1). (35.5)

It will turn out to be very useful, as in the case of the proper time, to write this as the square of something.
The object that serves this purpose is the following tensor:

aαβ dp dq =
1√
2

(
uα(1)uβ(2)− uα(2)uβ(1)

)
. (35.6)

It’s easy to check that

(Adp dq)2 =
(
aαβ dp dq

)
(aαβ dp dq) , (35.7)

and therefore

Adp dq =
√
aαβaαβ dp dq. (35.8)
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The second-order tensor aαβ is antisymmetric in its two indices. Comparing (35.4) with (35.6) we obtain

aαβ =
1√
2

(
∂ps

α ∂qs
β − ∂qsα ∂psβ

)
. (35.9)

Writing this in terms of the Levi-Civita symbol εab, (εpq = 1, εqp = −1, εpp = εqq = 0) and the Einstein
summation convention,

aαβ =
εab√

2
∂as

α ∂bs
β . (35.10)

we see how this would generalize to world “surfaces” of any dimension.

By analogy with the world line, we take the integral of the area elements as the definition of the world
surface’s action:

S[s] = C

∫
L dp dq (35.11)

L =
√
aαβaαβ aαβ =

εab√
2
∂as

α ∂bs
β . (35.12)

The C in this definition sets the scale of the action, analogous to the constant Mc in the particle action.

35.1.2 Signs and tachyons

Now is a good time to take account of the ± signs we have in the geometry of space-time, signs that are
absent in Euclidean space. Our definition of the particle action, as the integral of the proper time along the
world-line,

S[r] = Mc

∫
dτ = Mc

∫ √
−(∂prα)(∂prα) dp, (35.13)

is well defined as long as the tangent vector to the world-line, ∂pr
α, is everywhere time-like. Hypothetical

particles that violate this restriction are called “tachyons”.

We must check if any analogous restrictions apply to the world-sheet of a relativistic string. Consider an
observer at time t. This observer sees the world-sheet at that particular instant as a string. Also suppose
this observer is mostly interested in a short piece of the string, so short that it may be approximated as
straight. What motion does this piece of string display?

Because the string has no features along it length, the only motion that can be observed is transverse
motion. Suppose the axis defined by the short piece of string in the observer’s frame is x, and the direction
of transverse motion is along the y-axis. Given the instantaneous transverse velocity v measured by the
observer, we can construct an approximate parameterization of the string valid for the short piece of string
over a short period of time. The position x along the string and the observer’s time t will serve as the
parameters p and q. A small “patch” of world-surface, written in terms of these parameters and having the
required motion, will have the following coordinates:

s0(x, t) = ct (35.14)

s1(x, t) = x (35.15)

s2(x, t) = vt (35.16)

s3(x, t) = 0. (35.17)

Here are the corresponding tangent vectors (written as 4-vectors),

∂xs
α = (0, 1, 0, 0) (35.18)

∂ts
α = (c, 0, v, 0), (35.19)
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and the computation of the square of the area:

aαβaαβ = (∂xs
α ∂xsα)(∂ts

β ∂tsβ)− (∂xs
α ∂tsα)2 (35.20)

= (+1)(−c2 + v2)− (0)2 (35.21)

= −c2 + v2. (35.22)

Because this is negative for a string with sub-light-speed transverse velocity, we should modify our definition
of the string action:

S[s] = C

∫ √
−aαβaαβ dp dq. (35.23)

And since aαβaαβ is Lorentz-invariant, this definition gives a sensible non-negative argument for the square
root for all observers. The question of the sign of the argument of the square root will come up again, when
we recall how Hamilton’s principle and classical motion arises from quantum amplitudes.

Question: What should be the units of the constant C so that S has units of action?


