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34.1 Geometric action principles and relativity

It will not have escaped your notice that time plays a special role in all the formalisms of mechanics we have
studied in this course. In the Lagrangian formalism we consider systems specified by completely arbitrary
sets of generalized coordinates (positions, angles, etc.) and assert that the Lagrangian is a function of
these coordinates in addition to their time derivatives. The distinguished role of time carries over to the
Hamiltonian formalism, where half of all the variables — the conjugate momenta — are defined in terms
of time derivatives. And conservation laws, by their nature, are statements specifically about constancy in
time.

It is no accident, of course, that all the pre-Einstein formalisms of mechanics gave a special status to time.
And as long as we apply these formalisms to systems where velocities are small on the scale of the speed of
light, there is no need to replace them. In fact, idealizations such as “a rigid body” break down already when
velocities (of rotation about the center of mass) exceed the speed of sound. On the other hand, mechanics is
valuable not just for the technical and analytic tools it provides (in the low-speed realms where it applies),
but for its insights on the foundations of physical theories. Such was the case with Hamilton’s principle,
whose explication required quantum mechanics.

One response to Einstein’s “demotion” of time would be to study how the existing formalisms of mechanics
can be revised to be consistent with special relativity. Instead of this, and keeping with the foundational
perspective, we will take Einstein’s geometrical world-view as inspiration for the design of physical theories.
We start by giving the dynamics of a point particle a purely geometrical interpretation. Preserving the
principles while generalizing the geometry, we then propose a very interesting mechanical system: a fully
relativistic “string”. The quantum analogs of such objects have been proposed as the fundamental building
blocks of matter.

34.1.1 Notation

A particle in motion describes a curve in space-time. We will represent such “world-lines” as events r(p) in
space-time parameterized by a real number p. The action for the particle should not depend on how the
world-line — a geometrical object — is parameterized. We will check that our action is unchanged when
re-parameterized by a different parameter p′ = f(p), where f is an arbitrary monotonic function.

We use greek index superscripts α, β, . . . for the space-time components of 4-vectors, such as the location
rα of an event. The first component is the time-component, so r0 would be the time of an event (times c,
the speed of light), and components (r1, r2, r3) the position in space — what we have been denoting by r
in previous lectures. A standard way to express the Minkowski inner product rule is with superscript and
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subscript indices. For example, rα is defined by

rα = gαβ r
β , (34.1)

where we have used the Einstein summation convention for repeated indices, and g is the Minkowski metric
tensor with diagonal components g00 = −1, gii = +1, i = 1, 2, 3. The Minkowski inner product always
involves subscript/superscript pairs:

rαrα = r0r0 + r1r1 + r2r2 + r3r3 = −(r0)2 + (r1)2 + (r2)2 + (r3)2. (34.2)

Scalar quantities have no un-summed indices and are invariant with respect to Lorentz transformation. The
scalar above is −c2 times the square of the proper time between the origin and event r.

Increasing by one the dimension of a world-line produces a world-surface. To specify these we need two
real parameters, p and q. Events on the world-surface are written s(p, q). The action we construct for
world-surfaces will also be purely geometric and should be unchanged when we transform to another pair
of parameters, (p′, q′) = (f1(p, q), f2(p, q)). An observer at time t will see the world-surface events where
s0(p, q) = ct. This implicitly defines q as a function of p, and so the world-surface at a specific time is a
curve s(p, q(p)) in space parameterized by one parameter. These objects are called “strings”.

At some point we will construct densities in space-time corresponding to the energy and momentum of
particles or strings. Our notation for location in space-time, the argument of these densities, is the four-
vector xα, and should not be confused with the particular events occupied by the particle (rα) or string
(sα). We will be taking partial derivatives ∂/∂xα of these densities, and also partial derivatives ∂/∂p and
∂/∂q with respect to the parameters. The former type of derivative will be abbreviated ∂α and the latter ∂a,
where latin indices are reserved for p and q. An example of a density that combines these types of derivatives
is

ρ(x) = ∂pδ
4(x− r(p)) = −(∂pr

α)∂αδ
4(x− r(p)), (34.3)

where δ4(x − r) is a Dirac density in space-time (unit weight located at x = r) and the summation on α
comes about from the application of the multi-variable chain rule to the ∂p derivative.

34.1.2 Relativistic particle action

The simplest Lorentz-invariant scalar one can define for a world line is its length, that is, the net proper
time elapsed for an observer with that world line. For our parameterized world line r(p), the proper time dτ
elapsed on an infinitesimal element of extent dp in the parameter is the following Minkowski inner product:

c2dτ2 = −(∂pr
α dp)(∂prα dp). (34.4)

The integral of dτ for world lines r(p) that join two fixed events is our geometrical candidate for an action
functional S[r]:

S[r] = Mc

∫
L dp, (34.5)

L =
√
−(∂prα)(∂prα). (34.6)

As a mathematical expression we have tried to preserve the form we are familiar with: an integral of a
Lagrangian function that depends on at most first derivatives of the variables. The integration variable is
not time as in ordinary mechanics — that would make the definition explicitly non-Lorentz invariant — but
the arbitrary world-line parameter p. As a geometrical entity S should be independent of how we choose to
parameterize the world line, but this is also easily checked. When re-expressed in terms of the new parameter
p′ = f(p), the derivatives transform as ∂p = (df/dp)∂p′ while in the integral dp = (df/dp)−1dp′. Finally, the
momentum factor Mc, when multiplied by c times the elapsed time, gives S the correct units.


