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31.1 The gravitational two-body problem

In this lecture we solve, without approximations, the two-body problem for the case of the gravitational
potential. The key steps in the solution are (1) using the conserved energy E, (2) replacing time by the
orbit angle θ as the independent variable, and (3) replacing the radius by u = 1/r as the dependent variable.
Along the way we will see once again how the orbit closure property — the 2π periodicity of r with respect
to θ — is unique to the inverse square force law.

31.1.1 Conserved energy

Here is the Lagrangian from lecture 29, written in terms of the variables r and θ of the separation r = r1−r2
in the orbital plane:

L =
1

2
µ
(
ṙ2 + r2θ̇2

)
+
A

r
, µ =

M1M2

M1 +M2
, A = GM1M2. (31.1)

The Hamiltonian H has a constant value E since the time t is absent from L. As the kinetic energy T is
quadratic in the velocities, we know that H = T + V and therefore

E =
1

2
µ
(
ṙ2 + r2θ̇2

)
− A

r
(31.2)

is the conserved energy. We can also use the fact (lecture 29) that the angular momentum

Lz = µr2θ̇ (31.3)

is conserved to write an expression for E that involves only r and ṙ:

E =
1

2
µ ṙ2 +

L2
z

2µr2
− A

r
. (31.4)

We could solve this equation for ṙ and the resulting first order differential equation for r(t). While this would
express t as an explicit integral of a function of r, it is not obvious how that would explain the synchrony of
the periodicity in r and θ. To address this mystery head-on, we will change the independent variable from t
to θ.
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31.1.2 Angle as independent variable

Using the conserved angular momentum, the time derivative of r takes the following form:

dr

dt
=
dr

dθ

dθ

dt
=
dr

dθ

Lz

µr2
. (31.5)

Substituting this into (31.4) we obtain the following equation for the energy:

E =
L2
z

2µr4

(
dr

dθ

)2

+
L2
z

2µr2
− A

r
. (31.6)

This again is a first order differential equation for r that we could solve such that θ is expressed as an explicit
integral of a function of r. And again, it is not at all obvious why the corresponding inverse function (r as
a function of θ) would have periodicity 2π. To overcome this difficulty we make a change of the dependent
variable. Not all the steps in our solution have a clear motivation, and this is one of them.

31.1.3 Inverse distance as dependent variable

Defining a new dependent variable by
u(θ) = 1/r(θ), (31.7)

we obtain the following expression for the θ-derivative term in (31.6):

dr

dθ
= − 1

u2
du

dθ
,

1

r4

(
dr

dθ

)2

=

(
du

dθ

)2

. (31.8)

The resulting expression for E has terms that are either quadratic or linear in u:

E =
L2
z

2µ

((
du

dθ

)2

+ u2

)
−Au. (31.9)

We’ve saved the best trick for last. The conservation of energy, with the change of independent variable,

0 =
dE

dt
=
dE

dθ

dθ

dt
, (31.10)

implies

0 =
dE

dθ
(31.11)

except possibly when θ̇ = 0. However, for the type of orbit we will mostly be interested in this never happens
and we can therefore impose property (31.11) on equation (31.9):

0 =
dE

dθ
=
L2
z

2µ

(
2

(
du

dθ

)
d2u

dθ2
+ 2u

du

dθ

)
−Adu

dθ
. (31.12)

The whole point of using the inverse distance u is evident now, because all three terms have du/dθ as a
common factor, which when it is divided out reduces the quadratic (in u) terms into linear ones and the
linear term into a term that doesn’t involve u at all. Here is the resulting linear equation for u:

d2u

dθ2
+ u =

Aµ

L2
z

. (31.13)

This must be satisfied at all θ where du/dθ 6= 0. The exceptions, where u (and also r) is a local maximum
or minimum, are isolated points and play no role in determining the function u(θ)1.

1This is a result from analysis (math), regarding the analyticity of solutions of differential equations.
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31.1.4 Orbit closure

The most general solution of (31.13) is the sum of an arbitrary solution to the inhomogeneous equation,
u = Aµ/L2

z, and the most general solution to the homogeneous equation:

u(θ) =
Aµ

L2
z

+ u0 cos (θ − θ0). (31.14)

This already confirms that orbits are closed: as θ ranges over a full period, 0 to 2π, the radius r(θ) = 1/u(θ)
returns to its value at the start of the orbit. Now is as good a time as any to see how this seemingly mundane
fact is closely tied to the inverse square law.

Suppose the force of gravity was inverse-cube instead of inverse-square. Letting T be the kinetic energy
which is unchanged, the expression for the total energy is changed to

E = T − A′

r2
(31.15)

= T −A′u2, (31.16)

where A′ is the analog of A = GM1M2 for the inverse-cube law. Everything in our solution of the differential
equation for u would go through exactly as before, except that there will not be a constant term (new factor
shown in parentheses):

d2u

dθ2
+ u = (2u)

A′µ

L2
z

. (31.17)

d2u

dθ2
−K2u = 0, K =

√
2A′µ

L2
z

− 1. (31.18)

We have assumed in the definition of K that L2
z < 2A′µ (small angular momentum). The most general

solution to this differential equation is

u(θ) = u0 coshK(θ − θ0). (31.19)

Clearly r(θ) = 1/u(θ) does not have periodicity 2π and instead describes the double-death-spiral orbit shown
below2.

31.1.5 The orbit equation

Returning to the inverse square law, we finish by writing the solution for the orbit in a standard form with
some definitions. The constant term defines 1/r0, the angular average of the inverse distance:

u(θ) =
1

r(θ)
=

1

r0
(1 + ε cos (θ − θ0)) , r0 =

L2
z

Aµ
, ε = u0r0. (31.20)

Since u0 was arbitrary, we absorb it in the definition of the arbitrary dimensionless parameter ε, the “eccen-
tricity” of the orbit. The standard form of the orbit equation is now

r(θ) =
r0

1 + ε cos (θ − θ0)
. (31.21)

2Yet further evidence of the existence of God (orbits of the true law of gravity do not do this).



31-4 Lecture 31: April 21

An orbit (31.19) for inverse-cube gravity when the angular momentum is such that
K = 0.3.


