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30.1 The two-body problem

30.1.1 Circular orbits

Let’s take as our two-body potential the gravitational energy of two point masses:

V (r) = −A
r
, A = GM1M2. (30.1)
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we can write the equation of motion for the relative distance in terms of a single “effective potential”:

µr̈ = −dU
dr
, U(r) =

B

r2
− A

r
. (30.3)

The attractive A term, due to gravity, dominates at large r while the repulsive B term, called the “centrifugal
barrier”, dominates at small r. When Lz = 0 there is no barrier and there is nothing to prevent the two
masses from falling into each other.

Assuming Lz 6= 0, the radius r0 defined by
dU

dr
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is special. When the initial conditions are

r(0) = r0 (30.5)

ṙ(0) = 0, (30.6)

then the equation of motion

µr̈(0) = − dU

dr
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implies r(t) will stay constant at the special radius r0. This corresponds to a circular orbit. For this to
happen the separation must be at the minimum of the effective potential:
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Since both Lz and r = r0 are constant for circular orbits,

θ̇ =
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µr20

= ωθ = constant. (30.10)

We can use this in equation (30.9),
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which can be written compactly as
G(M1 +M2) = ω2

θ r
3
0. (30.12)

This is Kepler’s famous 1-2-3 law1 for the special case of circular orbits. Later we will see how this generalizes
to general, elliptical orbits.

30.1.2 Perturbation of the circular orbit

Let’s study what happens when the circular orbit is slightly perturbed. We will assume the perturbation δr
in the separation is so slight that we can approximate the function U(r) near its minimum by a parabola,

U(r) ≈ U(r0) +
1

2
U ′′(r0)(r − r0)2 (30.13)

= U0 +
1

2
Kδr2, (30.14)

where by using (30.9) the “stiffness” is given by
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The equation of motion for the perturbation

µ δ̈r = −dU
dr

= −Kδr, (30.16)

1This is my name for the law. Kepler did not have access to information about the “1” in mass1 × period2 ∝ radius3.
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is that of a harmonic oscillator with frequency

ωr =
√
K/µ. (30.17)

The subscript reminds us these are oscillations in the distance r between the bodies. In our perturbed-periodic
orbital motion there is another frequency: the angular frequency of orbit completion ωθ. Comparing these
by expressing them in terms of a common set of parameters we find:
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(30.18)

ω2
θ =

G(M1 +M2)

r30
(Kepler). (30.19)

The time taken to complete one radial oscillation is therefore equal to the time taken to complete one orbit.
Note that for the perturbed orbit only Lz is strictly constant, not θ̇ = ωθ. A better statement of the result of
our analysis is that the period T of the two kinds of motion is the same in the limit of small perturbations.

The apparent coincidence that ωr = ωθ is consistent with the possibility of closed elliptical orbits, that is,
orbits with an apogee — point of greatest distance from the center of force — that does not precess in angle.

Perturbation of a circular orbit of period T showing the maximum positive ampli-
tude radial perturbation δr0 at time t = 0 and the maximum negative amplitude
perturbation δr1/2 at time t = T/2.

In your homework assignment you will discover that the absence of precession is very special to the inverse-
square law of attraction between point masses and is upset by even small deviations from this law.


