Lecture 28

An infinite straight wire carrying current I is the source of magnetic field that encircles the wire in a right-handed sense (by definition) and has magnitude $B = \frac{\mu_0 I}{2\pi R}$ decaying as the inverse distance R from the wire:

![Diagram of magnetic field around a current-carrying wire]

The line integral of \vec{B} around a closed curve C does not have any direct physical interpretation (as does the line integral of \vec{E}) but
turns out to be a nice way to characterize the relationship between \vec{B} and its sources—much like Gauss’s law and \vec{E}.

Let’s start with a curve C that’s a circle of radius R, centered on the wire and in a plane perpendicular to the wire.

\[\text{d}r^\perp = \text{line element along } C \]

Because our choice of line element is everywhere parallel to \vec{B},
\[\oint_C \mathbf{B} \cdot d\mathbf{r} = \oint_C \left(\frac{\mu_0 I}{2\pi R} \right) dl = \frac{(\mu_0 I)}{2\pi R} \oint_C dl = \mu_0 I \]

a result that is independent of the radius of \(C \). We will now show that the line integral is independent of almost all properties of \(C \), in the case when \(C \) is not just a simple circle (analogous to the insensitivity, in Gauss's law, of the shape of the surface \(S \)).

So let's imagine a complicated closed curve \(C' \).

The first thing we can do is project C into a plane perpendicular to the wire. If the resulting curve is C_{\perp}, then

$$\oint_C \mathbf{B} \cdot d\mathbf{r} = \oint_{C_{\perp}} \mathbf{B} \cdot d\mathbf{r}$$
The line integral is unchanged under this projection because:

(1) \(\vec{B} \) is unchanged, when translated along parallel to the wire:

\[
\vec{B} \cdot d\vec{r} = B_{||} \cdot d\vec{r}_{||} + B_{\perp} \cdot d\vec{r}_{\perp} = B \cdot d\vec{r}_{\perp}
\]

(2) \(\vec{B} \) has no component parallel to the wire:

The second thing we can do is project each line element \(d\vec{r}_{\perp} \)
of \(C_{\perp} \) onto a circle of radius \(R \):

\[
d\vec{r}_{\perp} = d\vec{r} + R'd\phi \hat{\phi}
\]

\[
d\vec{r}_{\perp}' = 0 + R'd\phi \hat{\phi}
\]

(drawing on next page)
\[\overrightarrow{B} \cdot d\overrightarrow{r}_+ = \overrightarrow{B} \cdot (R'd\phi \hat{\phi}) = \left(\frac{\mu_0 I}{2\pi R} \right) R'd\phi \]

\[\overrightarrow{B} \cdot d\overrightarrow{r}_- = \left(\frac{\mu_0 I}{2\pi R} \right) R d\phi \]

So we only need to evaluate \(\overrightarrow{B} \) on the circle of radius \(R \) and the line elements \(d\overrightarrow{r}_+ \) all lie on this circle. When all the line elements are projected this way the result
is a circular curve C' which wraps around the wire the same number of times, and in the same sense, as the original curve C.

![Diagram of a circular curve C' wrapping around a wire.]

But this is just the very first line integral we performed, or multiple instances of it. For an arbitrary curve C we therefore have

$$\oint_C \vec{B} \cdot d\vec{r} = \mu_0 I \cdot N$$
\[N = \text{number of times C wraps around wire}. \]

\(N \) can be zero, when \(C \) does not wrap around at all, or negative, when \(C \) wraps around in a left-handed sense. The "sense" of the wrapping is determined in part by the direction of \(I \). Changing the direction of \(I \) changes the sense of the wrapping, and therefore the sign of \(N \). Equivalently, we can change the sign of \(I \) (to reverse its direction) and this also changes the sign of \(\mu_0 I N \).

Since the superposition principle applies \(\to \vec{E} \), it should also apply to \(\vec{B} \). The magnetic field
created by multiple wires carrying currents I_1, I_2, \ldots should be the sum of their individual magnetic fields $\mathbf{B}_1, \mathbf{B}_2, \ldots$. Let \mathbf{B} be this sum (the net magnetic field), then:

$$\oint_C \mathbf{B} \cdot d\mathbf{r} = \oint_C \mathbf{B}_1 \cdot d\mathbf{r} + \oint_C \mathbf{B}_2 \cdot d\mathbf{r} + \ldots$$

$$= \mu_0 I_1 N_1 + \mu_0 I_2 N_2 + \ldots$$

$$= \mu_0 I_{\text{enc}}$$

The "enclosed" current I_{enc} depends on both the currents flowing in the wires and the number of times C wraps around each of them.