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27.1 Adiabatic invariance (continued)

27.1.1 Proof of invariance

As promised in the previous lecture, we will prove adiabatic invariance of the pendulum action by performing
a sequence of time-dependent canonical transformations. We rewrite the time-dependent Hamiltonian for
angle-action variables in a form that conveys the generality of the method:

H0(θ0, I0, t) = ωI0 + ε
3

2
I0

(
1

l

dl

ds

)
sin θ0 cos θ0 (27.1)

= (ω(εt) + εh0(θ0, εt)) I0. (27.2)

We have added the subscript 0 to the Hamiltonian, as well as the angle-action variables, to indicate that
these are the first in an infinite sequence of definitions (defined below). Recall that all time dependence is
via the dimensionless parameter s = εt, and that time varies between t = 0 and t = 1/ε = T in the process.

In the homework assignment you will show that the time-dependent canonical transformation generated by

F0(θ0, I1, t) =

(
θ0 −

ε

ω(εt)

∫ θ0

0

h0(θ̃, εt)dθ̃

)
I1 (27.3)

produces the transformed Hamiltonian

H1(θ1, I1, t) =
(
ω(εt) + ε2h1(θ1, εt)

)
I1, (27.4)

which differs from (27.2) by having a different angle-dependent function h1, and more significantly, an extra
power of ε multiplying this function. Since the form of the Hamiltonian is unchanged, we can continue
applying canonical transformations of this kind (but with angular functions h1, h2, etc.) and produce
Hamiltonians1

Hn(θn, In, t) =
(
ω(εt) + εn+1hn(θn, εt)

)
In, (27.5)

for arbitrarily large n.

It would seem that adiabatic invariance now follows from Hamilton’s equations applied to Hn,

İn = −∂Hn
∂θn

= −εn+1 ∂hn
∂θn

In, (27.6)

1Hamiltonia?
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because then

In(T ) = In(0) + T ·O(εn+1) = In(0) +O(εn). (27.7)

However, what we really wanted to prove was adiabatic invariance of the original action variable I0, not the
multiply transformed variable In. To fix this detail we revisit the transformation formula:

In =
∂Fn
∂θn

=

(
1− εn+1

ω
hn(θn, εt)

)
In+1. (27.8)

First consider n = 0. From (27.1) we see that h0 ∝ dl/ds would vanish at the endpoints of the process (s = 0
and s = 1) if we arranged for the string-length derivative to vanish there. This property of an adiabatic
process, that there should be no discontinuous derivatives when the process is initiated and terminated,
should be just as important as the slowness (ε→ 0) of the process. Assuming hn vanishes at both endpoints,
the transformation formula (27.8) implies

s = 0 : In(0) = In+1(0) (27.9)

s = 1 : In(T ) = In+1(T ). (27.10)

So far we have only arranged for this to be true for n = 0. The rule for transforming the Hamiltonian
(assigned as homework) shows that hn+1 is constructed from hn and ∂hn/∂s. Therefore, all the functions
hn would vanish at s = 0 and s = 1 if not only h0, but all of its s-derivatives vanish at the endpoints of
the process. This is not as restrictive a condition as it might seem. For example (verification assigned as
homework), a string-length parameterization with behavior of the form

l(s) ∼
s→0

l1 + f(s)e−c/s (27.11)

for c > 0 and any rational function f(s) will have vanishing derivatives at all orders. Choosing our function
l(s) to have this infinitely smooth behavior at onset and also when the process terminates (s→ 1) will ensure
that all the functions hn vanish at the endpoints. By the transformation rule (27.8) all the transformed action
variables will therefore agree in value at the endpoints.

The proof of invariance — to arbitrary order in the slowness parameter ε — now follows by the following
steps:

I0(T ) = In(T ) = In(0) +O(εn) = I0(0) +O(εn). (27.12)

Question: Suppose the dimensionless product ε T0 is sufficiently small, where T0 is the period of the motion.
Does the result we just proved imply I0 is exactly conserved?

27.1.2 Adiabatic invariance and the stability of the Levitron R©

The parameter — under whose variation some action variable I is adiabatically invariant — is in many
instances itself a dynamical variable of a larger system and only appears to be “external”. A nice example
of this form of adiabatic invariance is the levitating magnetic top toy: the Levitron.

The Levitron is a scheme for levitating a small bar magnet by placing it over the fixed magnetic field of an
opposing bar magnet. The levitating magnet resists torques that threaten to flip it over by rapidly spinning
as a top about its magnetization axis. While this much of the physics is certainly relevant for a levitating
equilibrium, the stability of the equilibrium relies crucially on very different physics: adiabatic invariance.

Suppose the angular momentum, or “spin” S of the top is so great that its magnetic moment µ ∝ S maintains
a fixed orientation in space (the large torque required to change its axis is not present in its environment).
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Let the fixed axis of the top coincide with the vertical axis of gravity and define the z-axis. The potential
energy of the top now only depends on its position through the following potential energy function:

V (r) = Mgz − µ ·B(r) (27.13)

= Mgz − µBz(r). (27.14)

The static magnetic field B of the fixed permanent magnet can be expressed as the gradient of a potential
Φ that satisfies the Laplace equation outside the source:

B = ∇Φ, ∇2Φ = 0. (27.15)

These equations imply

Bz =
∂Φ

∂z
, ∇2Bz =

∂

∂z

(
∇2Φ

)
= 0. (27.16)

Since the gravitational energy Mgz also satisfied the Laplace equation, so does the entire potential energy
function V . But ∇2V is the trace of the Hessian matrix of V , and a value of zero implies that not all
three eigenvalues can be positive. The net potential energy function will therefore always have at least one
unstable direction!2

The possibility of a stable levitating state is only resolved by taking into consideration motion at three very
different time scales:

fast: spinning of top about its axis

intermediate: precession of the spin axis

slow: center-of-mass motion.

The second of these — precession — is the key to understanding the Levitron’s stability and is the subject
of the next lecture.

2The electrostatic analog of this — non-existence of static equilibrium among electric charges — is known as Earnshaw’s
theorem.


