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21.1 Phase space mixing

21.1.1 Ergodicity and statistical mechanics

While the rigor of Poincaré’s recurrence theorem is unassailable, the statement it proves is not very useful.
We are told there exists a phase space point z(0) in a region A(0) — that we are free to make as small as
we like — and a time t such that the time-evolved point z(t) will also be inside A(0). Not only do we lack a
good estimate of the minimum recurrence time t, we have no idea how plentiful points such as z(0) are. If
it turned out that “recurring” initial conditions are extremely rare, then there would not be much practical
significance to the theorem.

It is actually a good thing that recurring initial points are extremely rare, otherwise the modeling of the
properties of matter with statistical mechanics would not be possible. This subdiscipline of physics rests on
a mathematical hypothesis about mechanical systems that is very difficult to prove, but is generally believed
to be true. Although not a theorem, the ergodic hypothesis is more useful than the recurrence theorem
because it has practical consequences.

The ergodic hypothesis asserts that if a mechanical system is sufficiently “mixing”, then the time evolution
z(t) of an arbitrary initial phase space point z(0), given sufficient time t, will come arbitrarily close to every
accessible point in phase space. The “mixing” condition is technical and beyond the scope of these lectures,
but a physical analogy and a simple model later in the lecture should give you a sense of this term.

Consider a bucket of white paint into which a small drop of black paint has been added. The paints
are thick and remain separate, even when stirred with a stick. Phase space corresponds to the contents
of the bucket, the evolving region of initial conditions A(t) is the drop of black paint, and Hamiltonian
evolution is the volume preserving flow of paint — crudely implemented by the moving stick. When the
stick-motion/Hamiltonian-flow is sufficiently “mixing”, then the paint will turn homogeneously gray on
large scales. Though still perfectly segregated from the white paint on microscopic scales, the black drop will
become increasingly stretched and filamentary, folding on itself into a structure that fills the entire bucket.

What does the ergodic hypothesis imply for the recurrence theorem? Assuming the time evolution of our
system is “mixing up” phase space, the initial region A(0) will become increasingly dispersed over all of
phase space, its content stretched into thin filaments that have a uniform density. The fraction of initial
conditions in A(0) that return to A(0) after a long time t corresponds to the fraction of the filamentary,
phase-space filling region A(t) that intersects A(0). By the uniformity property of the ergodic hypothesis,

fraction of recurring initial conditions in A(0) =
vol(A(0))

vol(Ω)
, (21.1)

21-1



21-2 Lecture 21: March 20

where Ω represents the accessible region of phase space, usually restricted only by having the same range
of H values (initial energies) as the points in A(0). The more precise we make the initial conditions, the
smaller the fraction above becomes!

The ergodic hypothesis makes time evolution unnecessary when answering questions that are posed as time-
averages. For suppose that F (q1(t), . . . ; p1(t), . . .) is a function defined by our system coordinates and
momenta whose time average we wish to know. By the ergodic hypothesis, the point (q1(t), . . . ; p1(t), . . .)
visits over the course of time every subvolume element dq1 . . . dp1 . . . of the accessible phase space Ω with
equal frequency. The time average is therefore the same as the phase space average:

〈F (q1(t), . . . ; p1(t), . . .)〉t =
1

vol(Ω)

∫
Ω

dq1 . . . dp1 . . . F (q1, . . . ; p1, . . .). (21.2)

The applicability of statistical mechanics and thermodynamics rests upon the validity of the expression above,
since the time averaged properties of materials measured by experiments are recast as phase space averages.
We only have proofs of the ergodic hypothesis for very simple systems, such as Sinai’s “billiards”: a system
of two hard, elastic disks. Extensive numerical simulations and the internal consistency of thermodynamic
measurements give overwhelming support to the hypothesis.

21.1.2 Chaos inside the proton

Statistical mechanics is often incorrectly and unfairly characterized as a form of analysis that applies only
to systems with many degrees of freedom. But we made no reference to such a condition above, when we
discussed the ergodic hypothesis, and in fact systems with as few as two degrees of freedom can display
mixing behavior and have time averages that are exactly given by phase space averages. Small systems with
mixing dynamics are usually referred to as “chaotic”. We will describe such a system that exists in the
interior of protons and neutrons.

Before we describe the analogues of electric and magnetic fields that bind the quarks inside the proton, we
should review the dynamics of ordinary electric and magnetic fields. These do not have chaotic dynamics
and the ergodic hypothesis therefore does not apply to them.

To keep things simple, we consider fields in the absence of charges and in a world with only two spatial
dimensions. The electric field has two components, Ex and Ey, and the magnetic field just one, B. In the
Coulomb gauge these are expressed in terms of the two components of the vector potential (in units where
c = 1):

Ex = Ȧx, Ey = Ȧy, B =
∂Ay

∂x
− ∂Ax

∂y
. (21.3)

The vector potential corresponds to the generalized coordinates and the Lagrangian of the system is written
in terms of it as follows:

L =

∫
dx dy (E2

x + E2
y −B2) (21.4)

=

∫
dx dy

(
Ȧ2

x + Ȧ2
y −

(
∂Ay

∂x
− ∂Ax

∂y

)2
)
. (21.5)

To further simplify things, suppose we have spatially uniform initial conditions. That is, we consider a
system where initially Ax, Ay, Ȧx, and Ȧy are constant in space. Spatial uniformity will be maintained at
later times and therefore B = 0 at all times. The Lagrangian reduces to

L =
1

2
M(Ȧ2

x + Ȧ2
y), (21.6)
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where M is a constant (proportional to the area of space). This is the same as the Lagrangian of a free
particle moving in two dimensions. The most general solution is

Ex = Ȧx = constant Ey = Ȧy = constant. (21.7)

Not surprisingly, the most general, spatially uniform solution (in the absence of charges) is a uniform (in
space and time) electric field and vanishing magnetic field. Clearly the behavior of this system is poorly
mixing and time evolution is far from ergodic!

The analogs of electric and magnetic fields that glue together the quarks inside the proton are the Yang-Mills
fields. These differ from the ordinary Ex, Ey, and B mostly by coming in three types of “color”. Here they
are, written in terms of the vector potential:

Ex = Ȧx =
(
Ȧ1

x, Ȧ
2
x, Ȧ

3
x

)
(21.8)

Ey = Ȧy =
(
Ȧ1

y, Ȧ
2
y, Ȧ

3
y

)
(21.9)

B =
∂Ay

∂x
− ∂Ax

∂y
−Ax ×Ay. (21.10)

The bold-face symbols now represent vectors in a three dimensional color-space with superscript components
labeled 1, 2 and 3. The cross product in the magnetic-field-analog is to be interpreted as a cross-product in
this color-space. Here is the Lagrangian:

L =

∫
dx dy (Ex ·Ex + Ey ·Ey −B ·B) . (21.11)

Apart from the cross product term in B, this would just be three independent copies of the ordinary Maxwell
electric and magnetic fields (one for each color). The new cross product term is also significant in contributing
terms that are cubic and quartic in the vector potential. A Lagrangian with only quadratic terms, such as
the Maxwell Lagrangian, produces linear equations and non-chaotic motion.

As before, we specialize to spatially uniform initial conditions so that the fields will be spatially uniform at
all times. Here are the corresponding equations of motion:

Äx = 2(Ax ·Ay)Ay − 2(Ay ·Ay)Ax (21.12)

Äy = 2(Ax ·Ay)Ax − 2(Ax ·Ax)Ay. (21.13)

This is a system with six degrees of freedom. If the non-linear terms on the right hand side were absent, the
most general solution — as in the Maxwell theory — would have constant Ex and Ey, now with arbitrary
directions in color-space.

The easiest way to convince you that the above equations for six degrees of freedom produce chaotic motion
is to show that this behavior is displayed even by motion with simple initial conditions. It is easy to see that
there are initial conditions such that the two vector potentials will always be of purely one color:

Ax = (x(t), 0, 0) (21.14)

Ay = (0, y(t), 0). (21.15)

The symbols x(t) and y(t) do not refer to position in space but the amplitudes of, respectively, the 1 and 2
components of color of the two vector potentials. By (21.12) and (21.13), the equations of motion are

ẍ = −2y2x, ÿ = −2x2y, (21.16)

and correspond to a particle moving in the plane with a potential energy function V = x2y2.
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There is probably no better example of a mixing mechanism than the system of two degrees of freedom
described by equations (21.16). The “particle” negotiates a potential, V = x2y2, with four infinite canyons
running north, east, south and west from the origin. The potential has its minimum long the x and y axes
and rises quadratically away from the axes, the curvature growing with distance from the origin. The more
precisely the particle is launched along an axis, say the east canyon, the further it is able to move away from
the origin. However, slight deviations from the axis are amplified by the growing curvature, resulting in
higher and higher frequency oscillations perpendicular to the axis. Eventually the eastward progress of the
particle is halted and its direction along the canyon is reversed. When it emerges back at the origin, after
having experienced many oscillations in the canyon, it is just as likely to be injected into the north canyon as
the south canyon (the west canyon is another possibility). The sequence of canyons that the particle enters
is therefore very much like a random sequence.

The chaotic character of the dynamics of the Yang-Mills electric and magnetic fields that bind quarks no
doubt plays a role in the structure of the proton. Unfortunately, to understand the proton one not only has
to contend with classical motion that is inherently chaotic, but also the fact that the amount of action S
involved is so small in units of ~ that it is necessary to use quantum mechanics.


