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2.1 Additivity of angular velocity

As you learned in freshman physics, when the river has velocity v1, and the kid swimming has velocity v2

relative to the river, then the kid’s velocity relative to the shore is v1 + v2. This is a simple consequence of
the additivity of translations. If the position of a floating ball relative to the shore is r1, and the position of
the kid relative to the ball is r2, then the position of the kid relative to the shore is r1 + r2. Take the time
derivative of this and you get the addition of relative velocity rule.

Rotations are not that simple: they are not combined by addition. As a physical scenario, suppose there
is a pendulum mounted on a merry-go-round. During time ∆t the pendulum (as body) has rotated about
a horizontal axis relative to the merry-go-round (as “space”) by U1. But the merry-go-round has been
rotating during this time, so we have to take the result of the first rotation and apply another rotation U2,
now relative to the fixed earth (true space). The net transformation of coordinates is therefore given by the
(non-additive) product of rotations

U21 = U2U1. (2.1)

Fortunately, additivity still applies to angular velocity vectors. To see this, have the body and space frames
coincide at time t = 0. We can do this because the body frame basis vectors are arbitrary, as long as we fix
them once we’ve made our choice. As we learned in lecture 1, U̇1 = A1U1, and therefore

U1(∆t) ≈ U1(0) + ∆tA1(0)U1(0) (2.2)

is valid when ∆t is small. Since the two frames coincide at t = 0, U1(0) = 1 and we have

U1(∆t) ≈ 1 + ∆tA1(0). (2.3)

Here A1(0) is the antisymmetric matrix parametrized by the angular velocity vector ω1 of the pendulum
relative to the merry-go-round at time t = 0. By exactly the same argument

U2(∆t) ≈ 1 + ∆tA2(0), (2.4)

but where now A2(0) corresponds to the angular velocity vector ω2 of the merry-go-round relative to the
earth. Taking the product

U21(∆t) = U2(∆t)U1(∆t) ≈ 1 + ∆t (A2(0) + A1(0)) + O(∆t2), (2.5)

and comparing with the equation U̇21 = A21U21, we see that

A21(0) = A2(0) + A1(0). (2.6)
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Additivity of the antisymmetric matrix A — the time-rate-of-change of U — implies additivity of the
associated angular velocity vectors:

ω21 = ω2 + ω1. (2.7)

Think of this as a statement about three frames, just like the kid swimming in the river. When frames 0 and
1 are related by angular velocity ω1, and frames 1 and 2 by angular velocity ω2, the upshot is that frames
0 and 2 are then related by their sum.

Figure 2.1: Sum of angular velocities applied to a pendulum (green) fixed to a rotating merry-go-round. The
pendulum is constrained to swing in a vertical plane (shown) that is fixed to the merry-go-round. At this
instant of time the angular velocity of the pendulum, relative to the plane, is ω1. The plane has angular
velocity ω2 relative to the earth because it is fixed to the merry-go-round. The net angular velocity of the
pendulum relative to the earth, at this instant of time, is ω21 = ω2 + ω1.

2.2 Fictitious forces

The body frame basis vectors are special cases of vectors fixed to the body whose time derivatives we worked
out in lecture 1:

˙̂x′ = ω × x̂′ ˙̂y′ = ω × ŷ′ ˙̂z′ = ω × ẑ′. (2.8)

Now consider an arbitrary vector

a = a′xx̂
′ + a′yŷ

′ + a′z ẑ
′, (2.9)



Lecture 2: January 30 2-3

where we allow the body frame components a′x(t), etc. to change with time. For example, if a = r were a
position it could be moving relative to the body. Let’s compute the time derivative of this vector:

ȧ = ȧ′xx̂
′ + ȧ′yŷ

′ + ȧ′z ẑ
′ + a′x

˙̂x′ + a′y
˙̂y′ + a′z

˙̂z′

= å + ω × (a′xx̂
′ + a′yŷ

′ + a′z ẑ
′)

= å + ω × a. (2.10)

We’ll use an open circle above vectors to denote a frame-based time derivative1:

å = time derivative of a “as seen in the body frame”.

Equation (2.10) applies to any vector whose components we choose to express in terms of the rotating basis
vectors x̂′, ŷ′ and ẑ′. For example, when applied to a = ω we get

ω̇ = ω̊. (2.11)

The case we will be most interested in is where our general vector a is the velocity vector

a = ṙ (2.12)

= r̊ + ω × r. (2.13)

Applying equation (2.10) to this vector we get

ȧ = (̊r̊ + ω × r̊) + ω̊ × r + ω × (̊r + ω × r) (2.14)

r̈ = ˚̊r + ω × (ω × r) + 2ω × r̊ + ω̇ × r. (2.15)

The point of the kinematical relationship above is to relate the true acceleration of a particle, r̈, to the
apparent acceleration “as seen in the body frame”, ˚̊r. Say the particle has mass m. The true force acting
on the particle is

Ftrue = mr̈, (2.16)

while the force that “explains” the acceleration seen in the body frame is

Fbody = m̊r̊. (2.17)

Now if we insist on making sense of motion in the body frame — knowing full well that it is not an inertial
frame — we can do so by introducing fictitious forces to make up the difference:

Fbody = Ftrue + Ffict, (2.18)

Ffict/m = −ω × (ω × r)− 2ω × r̊− ω̇ × r. (2.19)

The first two terms in the fictitious force have special names. The centrifugal force

Fcent/m = −ω × (ω × r) (2.20)

scales as ω2 and depends on the position of the particle relative to the origin (axis of rotation). The Coriolis
force

Fcor/m = −2ω × r̊ (2.21)

1Veit Elser retains full intellectual property rights to this ground breaking notation.
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scales as ω1 and applies only when the particle has a nonzero velocity (̊r 6= 0) in the body frame. The third
term in the fictitious force is zero or very small in many situations, such as Earth-bound observations, where
the angular velocity vector is constant or nearly so.

Question: Explain the relationship, shared by all three fictitious forces, between the power of ω and the
number of time derivatives.

Question: Consider the most commonly encountered situation, where ω is constant and nonzero. One of
the fictitious forces violates time-reversal symmetry — which one?


