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19.1 Phase space

Phase space is the abstract space of which N dimensions correspond to the N generalized coordinates and
another N their corresponding conjugate momenta. With twice as many dimensions as ordinary coordinate
space, phase space can convey, geometrically, not just one trajectory of the system but the full range of
motions that are possible. We will illustrate this “global” perspective on motion with the example of a
pendulum that may swing with arbitrary amplitude, even to the point of looping around its support.

The arm of the pendulum, constrained to swing in a plane, has length l and negligible mass compared with
the mass M attached to its end. The Lagrangian for this pendulum is

L =
1

2
ml2θ̇2 +mgl cos θ, (19.1)

where θ is the angle with respect to the vertical. From this we obtain the conjugate momentum

pθ =
∂L
∂θ̇

= ml2θ̇, (19.2)

and the Hamiltonian

H = θ̇ pθ − L =
p2θ

2ml2
−mgl cos θ. (19.3)

Since dH/dt = −∂L/∂t = 0, trajectories stay on the “surface”

H(θ, pθ) = E = constant, (19.4)

where “surface” means one dimension less than the dimension of phase space, or 2N − 1. For our simple
pendulum the energy surfaces are the one-dimensional contours shown in the figure on the next page. We
recognize the angular character of the variable θ by picturing only one period in its range. While the phase
space looks like it would be an infinite strip, it is actually (in a topological sense) the infinite cylinder formed
by joining two sides where θ differs by 2π (in the figure we chose θ = ±π).
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Part of the pendulum’s two dimensional phase space showing contours of constant
energy. The dashed contour separates three qualitatively different modes of motion.
Since the variables on the left edge of this plot (θ = −π) are equivalent to the
variables on the right edge (θ = π), the pendulum’s phase space is topologically an
infinitely long cylinder.

19.1.1 Hamiltonian flow

Hamilton’s equations for the pendulum

θ̇ = +
∂H
∂pθ

=
pθ
ml2

(19.5)

ṗθ = −∂H
∂θ

= −mgl sin θ, (19.6)

define the “flow” on the energy surfaces.

Exercise: Add arrows to the energy contours above that show how the pendulum moves in phase space.

The flow field defined by Hamilton’s time evolution equations divide up the phase space of the pendulum
into three distinct domains:

• Bounded oscillations with center at pθ = 0, θ = 0.

• Clockwise spinning (θ̇ < 0).

• Counterclockwise spinning (θ̇ > 0).

Trajectories in phase space may never cross, otherwise there would be points where the flow vector (θ̇, ṗθ) is
not uniquely determined by the value of (∂H/∂pθ,−∂H/∂θ). An exception might be made for points such
as (θ = ±π, pθ = 0), where the flow vector is zero. But these are better classified as unstable equilibrium
points. Trajectories arbitrarily close to these points never actually cross.
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Exercise: Make a pair of sketches contrasting the flows in the neighborhoods of stable and unstable equi-
librium points.

Uniqueness of the flow also excludes the following from happening. Consider an arbitrary region A(0) in
phase space. For example, an A(0) that is a small disk (2N -ball) centered at some point has the interpretation
of many nearly identical initial conditions. Now consider the region A(t) formed by time-evolving the points
of A(0) for time t with Hamilton’s equations. Can the boundary of A(t) impinge on itself — that is, can
A(t) self-intersect? The best way to see that this cannot happen is to consider the time-reversed Hamilton
equations, for which the flow is no less unique (a point in the alleged region twice-covered by A(t) would
then flow to different points in the past).

Not only is the topology of an arbitrary region of phase space A(t) preserved over time by the uniqueness of
Hamiltonian flow, an even stronger property holds: its area (2N -volume) is constant. This is the subject of
the next section.

19.1.2 Liouville’s theorem

The constancy of the volume of a time-evolving region in phase is known as Liouville’s theorem. A statement
of the theorem that follows directly from Hamilton’s equations is

Liouville’s theorem 1: The Hamiltonian flow field has zero divergence.

The Hamiltonian flow field for a system with N degrees of freedom has components

(q̇1, . . . , q̇N ; ṗ1, . . . , ṗN ). (19.7)

In particular, the qk component of the field has value

q̇k =
∂H
∂pk

. (19.8)

Similarly, the pk component of the field has value

ṗk = − ∂H
∂qk

. (19.9)

The divergence (in 2N dimensions) is obtained by taking the qk-partial derivative of the qk component, the
pk-partial derivative of the pk component, and summing these together and also over all k from 1 to N . The
resulting divergence is

N∑
k=1

∂

∂qk

(
∂H
∂pk

)
+

N∑
k=1

∂

∂pk

(
− ∂H
∂qk

)
= 0. (19.10)
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To understand the connection between a flow field with vanishing divergence and volume-constancy, we
consider a general model of flow:

ẋi = Fi(x1, . . . , xM ), i = 1, . . . ,M. (19.11)

Here x is a point in an M -dimensional space. Our Hamiltonian flow problem corresponds to M = 2N
and a particular form for the functions Fi. By time-evolving a short time ∆t we can define a coordinate
transformation

xi → x′i(x) = xi + ∆t Fi(x). (19.12)

The Jacobian J of this coordinate transformation tells us how the volumes of integration elements are
transformed. Evaluating the Jacobian at the point x = a we obtain

J(a) = detG(a), Gij(a) =
∂x′i
∂xj

∣∣∣∣
a

= δij + ∆t
∂Fi
∂xj

∣∣∣∣
a

. (19.13)

Since the M ×M matrix G(a) has the form

G(a) = 1 + ∆t F ′, F ′
ij =

∂Fi
∂xj

∣∣∣∣
a

, (19.14)

we can expand its determinant in powers of ∆t:

J(a) = detG(a) = 1 + ∆tTr(F ′) +O(∆t2) = 1 + ∆t

M∑
i=1

∂Fi
∂xi

∣∣∣∣
a

+O(∆t2). (19.15)

We see that there is no volume change to order ∆t whenever the divergence of the flow field vanishes1.
Because the Hamiltonian flow field is a flow field with vanishing divergence, we have the second form of
Liouville’s theorem:

Liouville’s theorem 2: The phase space volume of a region A(t) evolved over time t by Hamil-
tonian flow is constant.

1The higher order terms in ∆t do not need to be considered since the transformation (19.12) is only specified to lowest order.


