
Physics 3318: Analytical Mechanics Spring 2017

Lecture 18: March 13
Instructor: Veit Elser c©Veit Elser

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

18.1 The Hamiltonian formalism

18.1.1 Hamiltonian equations of motion for Cartesian coordinates

We have already encountered the Hamiltonian H in connection with energy conservation in the Lagrangian
formulation of mechanics (lecture 9). Let’s review the Lagrangian equations of motion for the special case
that all the generalized coordinates are just the Cartesian particle coordinates (i.e. no constraints):

L = T − V =

N∑
i=1

1

2
miẋ

2
i − V (x1, . . . , xN ). (18.1)

We are using the symbol x for all components of the particle positions to keep the notation simpler. For a
3D system N will be a multiple of three, and m1 = m2 = m3 is the mass of the particle with 3D coordinates
(x1, x2, x3), etc. The equations of motion are the Euler-Lagrange equations for L:

d

dt

(
∂L
∂ẋi

)
=

∂L
∂xi

(18.2)

d

dt
(miẋi) = − ∂V

∂xi
. (18.3)

The Hamiltonian for this system is

H =
∑
i

ẋi
∂L
∂ẋi
− L =

N∑
i=1

1

2
miẋ

2
i + V (x1, . . . , xN ). (18.4)

In the Hamiltonian formalism the conjugate momenta

pi =
∂L
∂ẋi

= miẋi, (18.5)

are treated as independent variables rather than the velocities. Using (18.5) we can rewrite H in terms of
x’s and p’s:

H(x1, . . . , xN ; p1, . . . , pN ) =

N∑
i=1

p2i
2mi

+ V (x1, . . . , xN ). (18.6)

The key observation that forms the basis of the Hamiltonian formalism is that the partial derivatives of
H have a very simple structure. There are derivatives of two kinds: derivatives with respect to x’s and
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derivatives with respect to p’s. Starting with the x derivatives we obtain

∂H
∂xi

=
∂V

∂xi
= −mi

d

dt
(ẋi) = −ṗi, (18.7)

where we have used the equations of motion (18.3) and remembered to use (18.5) for expressing velocities
(their time derivatives) in terms of p’s. The p partial derivatives have the following form:

∂H
∂pi

=
pi
mi

= ẋi. (18.8)

The two kinds of equations, when written together,

ṗi = −∂H
∂xi

(18.9)

ẋi = +
∂H
∂pi

(18.10)

have an appealing anti-symmetrical structure. They form a system of 2N first-order differential equations
that evolve the x’s and p’s in time. The Lagrangian equations of motion (18.2), while they accomplish
the same thing, are a system of N second-order differential equations. It would be nice if the Hamiltonian
equations of motion always had the structure above, just as the Lagrangian equations of motion always have
the form (18.2) no matter what generalized coordinates we chose to use. This fact will be verified in the
next section.

18.1.2 Hamiltonian equations of motion for generalized coordinates

For a system described by Lagrangian

L(q1, . . . , qN ; q̇1, . . . , q̇N ; t), (18.11)

the conjugate momenta are defined by

pk =
∂L

∂q̇k
= Fk(q1, . . . , qN ; q̇1, . . . , q̇N ; t). (18.12)

The functions Fk we get upon taking the partial derivative have the N generalized velocities among their
arguments. There are N equations pk = Fk(· · · ) that will in principle enable us to express the N q̇’s in
terms of only q’s, p’s and t. We can then express the Hamiltonian

H =

N∑
k=1

q̇k pk − L (18.13)

purely in terms of q’s, p’s and t. We will have to be mindful of this functional dependence in our derivation
below.

Let’s start by taking partial derivatives with respect to p’s:

∂H
∂pl

=

N∑
k=1

∂q̇k
∂pl

pk + q̇l −
∂L
∂pl

. (18.14)

For the indicated partial derivatives on the right we need to think of the q̇’s as expressed in terms of q’s,
p’s and t. In particular, in the last term there is only one kind of argument of L (the generalized velocities)
that can have p dependence when we use the multi-variable chain rule:

∂L
∂pl

=

N∑
k=1

∂L
∂q̇k

∂q̇k
∂pl

=

N∑
k=1

pk
∂q̇k
∂pl

. (18.15)
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Substituting this into (18.14), the simple result

∂H
∂pl

= q̇l (18.16)

is exactly the generalization of (18.10) we were hoping to find.

For the other kind of partial derivative of H we begin with

∂H
∂ql

=

N∑
k=1

∂q̇k
∂ql

pk −
∂L
∂ql

. (18.17)

We have to be careful with the last term, which is a partial derivative of L where p’s and not q̇’s are held
fixed. That is, we have to allow for the fact that also the q̇ arguments of L have a q dependence after the
q̇’s have been expressed in terms of q’s, p’s and t:

∂L
∂ql

∣∣∣∣
p

=
∂L
∂ql

∣∣∣∣
q̇

+

N∑
k=1

∂L
∂q̇k

∣∣∣∣
q

∂q̇k
∂ql

. (18.18)

On all the partial derivatives of L we have added notation to clarify what arguments are being held fixed.
The term on the left, with p held fixed, is what we need in the calculation of (18.17) for the Hamiltonian
choice of independent variables. The two terms on the right correspond to the usual partial derivatives of L
we calculate in the Lagrangian formalism. Both of these are already known to us in terms of other quantities:

∂L
∂q̇k

∣∣∣∣
q

= pk (18.19)

∂L
∂ql

∣∣∣∣
q̇

=
d

dt

(
∂L
∂q̇l

)∣∣∣∣
q

= ṗl. (18.20)

In the second of these we used the Lagrangian equations of motion. Substituting these into (18.18) and
(18.17), we obtain

∂H
∂ql

=

N∑
k=1

∂q̇k
∂ql

pk − ṗl −
N∑

k=1

pk
∂q̇k
∂ql

= −ṗl. (18.21)

This is the generalization of (18.9) we were hoping to find.

Summarizing, the Hamiltonian equations of motion for a system described by N arbitrary generalized coor-
dinates and their corresponding conjugate momenta are

ṗk = − ∂H
∂qk

(18.22)

q̇k = +
∂H
∂pk

. (18.23)

The signs are the only thing that might challenge your memory. However, even that is easily reconstructed
when you think of the coordinate dependent part of H being the potential energy V , so that the first equation
is just a generalization of the familiar ṗ = F = −∇V from freshman physics.


