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17.1 Conservation laws from continuous symmetries

No doubt you have come across the assertion that the symmetries of space are somehow responsible for the
fundamental conservation laws of linear and angular momentum. In this lecture we see how this connection
is made precise. The key idea is to study the properties of a Lagrangian that is invariant with respect to a
continuous transformation. A theorem discovered (and proved) by Emmy Noether in 1915 provides a method
for teasing out the conserved quantity directly from the Lagrangian, provided there is an invariance with
respect to a transformation law. Beyond its obvious intellectual appeal, the theorem is useful in exotic spheres
of physics (e.g. elementary particle theory) where an intuitive/geometric understanding of symmetries can
be elusive!

17.1.1 Continuous symmetries of the Lagrangian

Let’s start with an example. Consider the Lagrangian for a particle freely moving in the plane (no potential
energy). In polar coordinates:

L =
1

2
M(ṙ2 + r2θ̇2). (17.1)

As we learned in lecture 10, the absence of θ in L implies that the momentum conjugate to θ,

pθ =
∂L
∂θ̇

= Mr2θ̇ (17.2)

is conserved — the angular momentum. Surprisingly, this system has another conservation law associated
with a mysterious continuous symmetry known as “s-symmetry”.

The transformation rule for a continuous symmetry only needs to be specified close to the identity trans-
formation. “Large” transformations are then obtained by composing the infinitesimal transformations. We
will use the variable s to parameterize the transformation of s-symmetry, where s = 0 corresponds to the
identity transformation. The near-identity (lowest order in s) transformation rule is written as follows:

r(s) = r + (cos θ)s (17.3)

θ(s) = θ −
(

sin θ

r

)
s. (17.4)

To study the transformation of the Lagrangian (17.1) we also need to work out the transformation of the
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velocities:

ṙ(s) = ṙ − (θ̇ sin θ)s (17.5)

θ̇(s) = θ̇ −

(
θ̇ cos θ

r

)
s+

(
ṙ sin θ

r2

)
s. (17.6)

Substituting these and the transformation r(s) into (17.1),

L(s) =
1

2
M

(ṙ − (θ̇ sin θ)s
)2

+ (r + (cos θ)s)
2

(
θ̇ −

(
θ̇ cos θ

r

)
s+

(
ṙ sin θ

r2

)
s

)2
 , (17.7)

expanding and keeping terms only up to linear order in s, we find:

L(s) =
1

2
M(ṙ2 + r2θ̇2) +O(s2). (17.8)

This shows that the Lagrangian is unchanged to lowest order in the parameter s. It should not bother you
that there are terms of order s2, because we only went as far as order s1 in expressing the transformation
rule (17.3). Our formal definition of invariance is the property

d

ds
L(s)

∣∣∣∣
s=0

= 0. (17.9)

17.1.2 Conservation laws from continuous symmetries

We now turn to the derivation of a conservation law for the general Lagrangian

L (q1(s), . . . , qN (s); q̇1(s), . . . , q̇N (s)) , (17.10)

where s is the parameter of a continuous transformation, such as the mysterious s-symmetry described above.
The derivation goes through when we have the invariance property

d

ds
L (q1(s), . . . , qN (s); q̇1(s), . . . , q̇N (s))

∣∣∣∣
s=0

= 0. (17.11)

The first step in the derivation is to apply the multi-variable chain rule in evaluating the derivative:

N∑
k=1

(
∂L
∂qk

dqk
ds

+
∂L
∂q̇k

dq̇k
ds

)∣∣∣∣∣
s=0

= 0. (17.12)

Next we use the fact that the Euler-Lagrange equations still hold (for any fixed s), and therefore:

∂L
∂qk

=
d

dt

(
∂L
∂q̇k

)
, k = 1, . . . , N. (17.13)

The result of substituting this into (17.12),

N∑
k=1

((
d

dt

(
∂L
∂q̇k

))
dqk
ds

+
∂L
∂q̇k

(
d

dt

(
dqk
ds

)))∣∣∣∣∣
s=0

= 0, (17.14)

is the product rule of differentiation applied to

d

dt

(
N∑
k=1

∂L
∂q̇k

dqk
ds

)∣∣∣∣∣
s=0

= 0. (17.15)
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Using the definition of conjugate momentum (at s = 0)

∂L
∂q̇k

∣∣∣∣
s=0

= pk, (17.16)

we can write (17.15) as

dI

dt
= 0, I =

N∑
k=1

pk
dqk
ds

∣∣∣∣
s=0

. (17.17)

This shows that the quantity I, constructed from the conjugate momenta and the rates of change of the
generalized coordinates with respect to s, is conserved.

Let’s evaluate I for the mysterious s-symmetry of a particle moving in the plane:

pr = Mṙ
dr(s)

ds

∣∣∣∣
s=0

= cos θ, (17.18)

pθ = Mr2θ̇
dθ(s)

ds

∣∣∣∣
s=0

= − sin θ

r
. (17.19)

I = (Mṙ) (cos θ) +
(
Mr2θ̇

)(
− sin θ

r

)
(17.20)

= M
(
ṙ cos θ − rθ̇ sin θ

)
. (17.21)

Question: Is this really a “new” conserved quantity? Describe the mysterious s-symmetry in non-mysterious
terms.

17.1.3 Noether’s theorem

A slight generalization of the statement of invariance (17.11),

d

ds
L (q1(s), . . . , qN (s); q̇1(s), . . . , q̇N (s))

∣∣∣∣
s=0

=
dF

dt
, (17.22)

still leads to a conserved quantity. Here F is an arbitrary function of the generalized coordinates and their
velocities. Repeating the derivation above with dF/dt replacing the zero on the right-hand side, we see that
the conserved quantity is now

I =

N∑
k=1

pk
dqk
ds

∣∣∣∣
s=0

− F. (17.23)

This more general construction of a conserved quantity from a continuous symmetry is known as Noether’s
theorem. In a homework problem you will see an application where the function F appears.
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Question: Does adding the time derivative of a function, dF/dt, to a Lagrangian (say as a result of a
continuous symmetry transformation) change the equations of motion? Hint: How does adding such a term
affect Hamilton’s principle?


