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16.1 Constrained variations in mechanics (continued)

16.1.1 Non-holonomic constraints: the rolling wheel

Recall that the Lagrangian formulation of mechanics is incomplete unless we can adapt the method to handle
systems with non-holonomic constraints. In such systems it is impossible to specify the positions of all the
particles with N generalized coordinates, where N is the number of degrees of freedom. For the Lagrangian
formulation to apply to systems with non-holonomic constraints we must work with more than N generalized
coordinates and reduce the number of degrees of freedom down to N by imposing constraints.

We will explain the method of imposing non-holonomic constraints using the example of the rolling wheel
introduced in lecture 10. This system has four degrees of freedom when we ignore the rolling-without-slipping
constraint. We can describe the motion of this unconstrained wheel with four generalized coordinates: the
position (x, y) of the wheel’s center (in the plane where it moves), the angle θ between the wheel’s axis and
the x-axis, and the angle φ the wheel has rotated about its axis.

Before we address the main problem of constraints, let’s construct the Lagrangian for the unconstrained
(slipping) wheel. The kinetic energy has translational and rotational contributions:

Ttrans =
1

2
M(ẋ2 + ẏ2) Trot =

1

2
(Iθ̇2 + I3φ̇

2). (16.1)

Because wheels are (rotationally) symmetric tops, we use the standard notation for the two principal moments
of inertia. We will add a potential energy by tilting the (x, y) plane by angle α relative to the horizontal,
where uphill corresponds to increasing y:

V = (Mg sinα)y. (16.2)

The unconstrained wheel therefore has Lagrangian

L = Ttrans + Trot − V, (16.3)

and its action

S[x, y, θ, φ] =

∫ t2

t1

L dt (16.4)

is a functional of four independent functions.
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The rolling-without-slipping constraints are constraints on the velocities of the generalized coordinates (lec-
ture 10):

ẋ = rφ̇ sin θ

ẏ = −rφ̇ cos θ.
(16.5)

We will interpret these as constraints on the set of possible variations that can be applied to the functions
x(t), y(t), θ(t) and φ(t). There are no constraints among the values of these functions at any one particular
time t. However, consider the values at a short time later, say t′ = t+ ∆t. We can write

x(t′) = x(t) + δx(t)

y(t′) = y(t) + δy(t)

θ(t′) = θ(t) + δθ(t)

φ(t′) = φ(t) + δφ(t)

(16.6)

and ask what are the constraints on the changes to the generalized coordinates. Expressing the time deriva-
tives in (16.5) as finite differences over time ∆t, we obtain the following two equations:

δx(t)− r sin θ(t) δφ(t) = 0

δy(t) + r cos θ(t) δφ(t) = 0.
(16.7)

We should think of these as two linear constraints on the set of allowed variations at time t. The four
variations in (16.6) are thus reduced to two independent variations. This has the effect of reducing four
degrees of freedom to two.

To learn how to handle constraints of the type (16.7) in Hamilton’s variational principle, we consider an
analogous problem for few variables. Suppose we have a function f(x, y) and wish to find “extreme” points
(x?, y?) of f in a restricted sense. Rather than insist that the change in f(x? + δx, y? + δy) vanishes to first
order in δx and δy for arbitrary δx and δy, we only require that this is true when these “variations” satisfy
a linear constraint of the form

vx(x, y) δx+ vy(x, y) δy = 0. (16.8)

Here v = (vx, vy) is a vector field in the (x, y) plane of our choosing. By exactly the same reasoning we used
in lecture 13 to find extrema subject to constraint functions, we see that a necessary condition on the point
(x?, y?) is that the gradient of f at this point is parallel to v, or

(∇f + λv)|(x?,y?) = 0 (16.9)

for some λ. This reverts to the case of constraint functions when the vector field v can be expressed as the
gradient of a scalar function — a constraint function g(x, y). But as you know, there are vector fields for
which this is not possible. The difference between holonomic and non-holonomic constraints is therefore the
same as the difference between vector fields that can and cannot be expressed as gradients of functions.

When there are multiple vector field constraints of the form (16.8), then just as in the case of multiple
constraint functions (lecture 13) we look for extrema defined by

(∇f + λ1v1 + λ2v2 + · · · )|(x?,y?) = 0. (16.10)

Returning to the mechanics of the rolling wheel, we should start by taking stock of the numbers of things
that enter into the Lagrange multiplier mathematics, now that we have the complication of variables and
constraints at infinitely many times. First, the number of dimensions of the space we are working in is
4×∞, which you can think of as the functions x(t), y(t), θ(t) and φ(t) at infinitely many instants of time.
The number of vector/gradient components in the counterpart to (16.10) is therefore 4 ×∞. Second, the
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number of vector fields in the counterpart to (16.10) is 2×∞, one for each of the two constraints (16.7)
at each instant of time. From the constraint equations (16.7) we see that the same time t applies to all of the
variables in the constraint. We will therefore use the same symbol t to label variables and the constraint in
which they reside. The names of the Lagrange multipliers for the constraints (16.7) will be λ1(t) and λ2(t).

Let’s start with the x(t)-component of the vector expression (16.10). Remembering that the unconstrained
action S corresponds to the function f being extremized, the gradient of f corresponds to the variational
derivative

δS

δx(t)
= − d

dt
(Mẋ) = −Mẍ. (16.11)

From (16.7) we can read off the x(t)-components of the vector fields as the coefficients of δx(t). There is
just one term in the vector field sum of (16.10), because only the first constraint equation (and one time)
involves δx(t). The x(t)-component part of (16.10) is therefore the simple equation

−Mẍ+ λ1(t) · 1 = 0. (16.12)

The other vector components are computed similarly:

−Mÿ −Mg sinα+ λ2(t) = 0 (16.13)

−Iθ̈ = 0 (16.14)

−I3φ̈− λ1(t)r sin θ + λ2(t)r cos θ = 0. (16.15)

Exercise: Be sure to check these equations!

We have reduced the rolling wheel to the set of four equations above. Of course in solving these we may
still use the original rolling-without-slipping equations (16.5). By taking the time derivative of the first and
using (16.12), we obtain the following equation for one of the Lagrange multipliers:

λ1(t) = Mẍ (16.16)

= Mr
(
φ̈ sin θ + φ̇θ̇ cos θ

)
. (16.17)

Similarly, solving (16.13) for λ2 and substituting ÿ from the time derivative of (16.5) we obtain

λ2(t) = Mÿ +Mg sinα (16.18)

= Mr
(
−φ̈ cos θ + φ̇θ̇ sin θ

)
+Mg sinα. (16.19)

Substituting these two Lagrange multipliers into (16.15) we obtain (after some cancellation)

(I3 +Mr2)φ̈ = Mgr sinα cos θ. (16.20)

Substituting the general solution of (16.14),

θ(t) = ωt+ θ0, (16.21)

into (16.20) we arrive at
(I3 +Mr2)φ̈ = Mgr sinα cos (ωt+ θ0). (16.22)

This is the same equation you will derive in the homework by Newtonian methods. Our solution of the
rolling wheel problem is now complete. Two time integrals applied to (16.22) yields φ(t), and substituting
it and our solution for θ(t) into (16.5) gives us x(t) and y(t) by a pair of integrals.


