Lecture 15

A "resistor" is one of the basic components of electrical circuits. It has the property that current \(I = (V_a - V_b) / R \) flows between its two terminals when these have potential difference \(V_a - V_b \):

![Diagram of resistor with current flow](image)

The direction of positive current flow indicated above...
in the circuit diagram implies $V_a > V_b$. This is consistent with $\vec{E} = -\nabla \Phi$, as \vec{E} is always in the same direction as I by

$$\vec{J} = \frac{1}{\rho} \vec{E}.$$

Most circuits are designed with resistors in mind that have a constant value of R. However, as we have seen, physical parameters such as temperature can change R. A charge (e.g. conduction electron) moving through a
A resistor loses energy to frictional forces. The rate of energy loss, or power, for all the free charge that moves between the terminals during time Δt is

$$P = \frac{\Delta Q \cdot V_a - \Delta Q \cdot V_b}{\Delta t}$$

$$= \frac{\Delta Q}{\Delta t} V = IV$$

Using Ohm's Law this can be also written using just I or just V:

$$P = IV = I^2R = V^2/R$$
Even though both I and V involve electrical units, the combination IV is just the mechanical unit of power: Watt

$$Amp \times Volt = \frac{C}{S} \times \frac{J}{C} = \frac{J}{S} = W$$

Energy/power is introduced in a circuit by batteries. The origin of the energy is chemical: the formation of lower energy molecules in processes that involve the transfer of charge. We will explain the battery mechanism using the
example of the lead-acid storage battery:

Sulfuric acid:

\[\text{H}_2\text{SO}_4 \rightarrow 2\text{H}^+ + \text{SO}_4^{2-} \]

Ions in solution

Chemist's view:

Chemical reactions take place at the surface of the lead-
oxide electrode (A) and the surface of the lead electrode (B):

(A): \[2e^- + PbO_2 + 4H^+ + SO_4^{2-} \]
\[\rightarrow \]
\[PbSO_4 + 2H_2O \quad + 3.37 \text{ eV} \]
\[\text{low energy molecules} \]

(B): \[SO_4^{2-} + Pb \rightarrow PbSO_4 + 2e^- \]
\[\text{low energy} \quad + 0.71 \text{ eV} \]

Notice that whenever a pair of these reactions takes place, charge -2e flows directly
from the Pb electrode to the PbO₂ electrode (via the circuit that the battery is connected to) while charge +2e flows internally (through the solution) between the same pair of electrodes.

Physicist's View

- External: +2e
- Internal: +2e

Net chemical energy gain when charge +2e moves around loop:

\[3.37 \text{ eV} + 0.71 \text{ eV} = 4.08 \text{ eV} \]
The "electromotive force" (emf) of the battery is defined as the energy gain per unit charge that moves through the battery:

\[\text{emf} = E = \frac{4.08 \text{ eV}}{2e} = 2.04 \text{ Volts} \]

This energy output of the battery is dissipated by both the external and internal parts of the circuit.

\[I \rightarrow R(\text{external resistance}) \rightarrow \bullet \rightarrow r(\text{internal resistance}) \]
\[E = IR + Ir \]

We should contrast \(E \) with the potential "seen" by the external circuit, the "terminal voltage" \(V \):

\[V = IR = \left(\frac{E}{R+r} \right)R \]

\[= \left(\frac{R}{R+r} \right)E < V \]

Normally \(r \ll R \) and \(V \approx E \), but when a battery "runs low" it's usually because \(r \) is large.