Assignment 1

Due date: Wednesday, January 29

Gyrating ring

A ring of radius R rolls without slipping on a table while its axis is inclined with respect to the vertical by angle α. As the ring gyrates, its center of mass stays fixed in space and its point of contact with the table moves around a circle with period T. Obtain an explicit expression for the ring’s angular velocity vector $\mathbf{\omega}$.

Rolling sphere

A sphere of radius R rolls without slipping on a table. Interpret “rolling without slipping” in this case as the property that the point of the sphere making contact with the table is instantaneously at rest. Obtain a vector relationship between the sphere’s angular velocity $\mathbf{\omega}$, linear velocity \mathbf{v}, and the unit normal vector of the table, \mathbf{n}.

The number of “degrees of freedom” is usually defined as the number of continuous parameters required to uniquely specify the positions in a mechanical system. A better definition counts the number of independent velocity components of the system’s motion. According to the better definition, how many degrees of freedom does a rolling ball have?

Time dependent angular velocity

The body frame (of some body) is related to the space frame by the orthogonal matrix U. We learned that the time rate of change of U satisfies the equation $\dot{U} = AU$, where

$$A = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}$$

is an antisymmetric matrix whose nonzero elements correspond to the components of the angular velocity vector in the space frame. Consider a situation where $\mathbf{\omega}$ maintains a constant magnitude ω but changes its direction with time; in particular,

$$\omega_x = \omega \cos \Omega t \quad \omega_y = \omega \sin \Omega t \quad \omega_z = 0. $$

Suppose the space and body frames coincide at $t = 0$, so $U(0)$ is the identity matrix. Take a period of time $T = 2\pi/\Omega$, so ω completes one period. Over this period the average of the angular velocity vector is zero. Will $U(T)$ again be the identity matrix?
Write a simple computer program that implements a finite-difference integration of the equation $\dot{U} = AU$:

$$U(t + \Delta t) - U(t) = \Delta t A(t) U(t)$$

Check that your final $U(T)$ is nearly orthogonal; if not, you need to decrease Δt. Output $U(T)$ for two cases: $\omega = 0.1\Omega$ and $\omega = \Omega$.