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Assignment 7 solutions

1. Under the continuous transformation with the parameter s, the Lagrangian can be
expressed as

L(s)=L(qi(t+s), - ,gn(t+5);q1(t+5), -, gN{ +5)).

Since L is constructed from functions (g’s and ¢’s) all having the argument s + ¢, by
the chain rule of calculus we can infer that
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We can hence identify the function F' as the Lagrangian L, apart from an irrelevant
constant.

Using the Euler-Lagrange equation, we can rewrite (1) as
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so that dI/dt = 0. This quantity / is exactly the Hamiltonian H we defined several
weeks ago.
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From Assignment 4, the Lagrangian of the system is given by
_1 2., .2 _ 2 _
L= 2m(R +r°—2Rrcosf) 8 —mg(R—rcosb),

with the conjugate momentum

AL .
Po=— = m(R>+r?> = 2Rrcos®) 6 .

The Hamiltonian is hence given by
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—2m(R +r“—2Rrcosf) 8-+ mg(R —rcosf)

_ Py
2m(R? + 1?2 — 2Rr cos )

+ mg(R —rcos0)

- 0 ™
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Because dH/dt = 0L/dt = 0, we can plot the trajectory that stays on the surface of
constant energy E

Ps
2m(R? +r2 — 2Rr cos 6)

H (6, pg) = +mg(R—rcosf) =E.
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When E = mg(R — r), the “surface” of constant energy stays at the origin, which
corresponds to the trivial state that the point mass stays at the lowest point forever. For
mg(R —r) < E < mg(R + r), the trajectory is a bounded oscillation, with turning
points at §y = + cos~!((mgR — E)/(mgr)). For E > mg(R + r), the total energy is
large enough for the wheel to keep moving forward/backward. Since this motion has a
period 2, the plot with the range (—, ) of 6 is enough for expressing the motion.

The direction of the flow in phase space can be determined by the equation

Pe

0 = ,
m(R? +r2 — 2Rr cos 0)

which indicates that the change of 6 depends on the sign of pyg.
From the discussion above, we know that the change of the topology of the orbits occurs
at E* = mg(R +r).

3. Switching to the dimensionless time, the equations of motion become

cosf @ = sin@ & — cos® 0 cos a

cos? 9) . cos’ @

Oa + sin « .

sSin

cosf a = —(sin0+2
sin

In the small angle approximation where 6(¢) = n/2 + (t) and both 5(¢) and a(t) are
small, we can expand cos # and sin 8 as

cosf =cos(n/2+ B) = —sin B = —B + O(B°)
sinf = sin(w/2 + B) =cos B =1 — B2/2+ O(BY).

Substituting these expressions back to the equations of motion and only keeping the
relevant lowest-order terms, we have

-BB =d* - p? )
Ba = Ba. (3)

We first observe that the system of equations becomes
BB =B
0=0
when & = 0, which gives us the first two types of solutions:

(a) @ = ¢ and B = 0, where a is a small constant. The resulting potential energy
V = esinf cos a remains constant. From energy conservation we can see that
this solution amounts to the parallel transport of the dipole around the equator of
the sphere at constant angular velocity .
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(b) @ = agp and ,8 = . We can solve B(r) = Bpe™". Substituting a () and S(¢) back
to the non-holonomic constraint

@ +cosf¢=0,

we have ¢ = 0 and therefore ¢(t) = ¢. This solution describes the longitudinal
motion of the dipole towards the equator of the sphere.

For & # 0, 8 # 0, and we can rearrange Equation (3) to

B
B &
which gives the relation
a(r) = cB(1).
Substituting this relation to the non-holonomic constraint, we have
Bt)(c—¢) =0,
and we can solve ¢(t) = ct + ¢g. Also, Equation (2) becomes
B=-(*-Dp,

from which we obtain the other three types of solutions:

() c>1:

B(t) = Brcos(VcZ2 —11) + Brsin(Vc? —11).
In this solution, the dipole moves longitudinally at constant angular velocity ¢ = ¢

while oscillates sinusoidally about the equator in the latitudinal direction.
d c=1:

B() = pit + pa.

This solution describes a dipole moving longitudinally at constant angular velocity

¢ = c¢ while moving away from the equator at constant rate 5;. We notice that
this solution fails to describe the motion of the dipole once () violates the small
angle approximation.

(e) c<1:

B(t) = Brexp(NV1 —c2 1) + Brexp(=V1 —c2 1).

The dipole also moves longitudinally at constant angular velocity ¢ = ¢ whereas
moves away from the equator at an exponential rate. This solution also becomes
invalid once S(t) breaks the small angle approximation.
Notice that when ¢ — 0,

a(t) -0

B(t) = Bre' + pae™,
which gives us the solutions obtained in (a) (81 = B> = 0) and (b) (51 = 0).



