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Assignment 7 solutions

1. Under the continuous transformation with the parameter s, the Lagrangian can be
expressed as

L(s) = L(q1(t + s), · · · , qN (t + s); q̇1(t + s), · · · , q̇N (t + s)).

Since L is constructed from functions (q’s and q̇’s) all having the argument s + t, by
the chain rule of calculus we can infer that

dL
ds

����s=0
=

N∑
k=1

(
∂L
∂qk

q̇k +
∂L
∂q̇k

q̈k

) �����t
=

dL
dt
. (1)

We can hence identify the function F as the Lagrangian L, apart from an irrelevant
constant.
Using the Euler-Lagrange equation, we can rewrite (1) as

N∑
k=1

(
∂L
∂qk

q̇k +
∂L
∂q̇k

q̈k

)
=

N∑
k=1

(
d
dt

(
∂L
∂q̇k

)
q̇k +

∂L
∂q̇k

q̈k

)

=
d
dt

*
,

N∑
k=1

∂L
∂q̇k

q̇k+
-

=
d
dt

*
,

N∑
k=1

pk q̇k+
-
=

dL
dt
.

We can hence define a conserved quantity I

I ≡
N∑

k=1
pk q̇k − L

so that dI/dt = 0. This quantity I is exactly the Hamiltonian H we defined several
weeks ago.
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2.

From Assignment 4, the Lagrangian of the system is given by

L =
1
2

m(R2 + r2 − 2Rr cos θ) θ̇2 − mg(R − r cos θ) ,

with the conjugate momentum

pθ =
∂L
∂θ̇
= m(R2 + r2 − 2Rr cos θ) θ̇ .

The Hamiltonian is hence given by

H = θ̇
∂L
∂θ̇
− L

=
1
2

m(R2 + r2 − 2Rr cos θ) θ̇2 + mg(R − r cos θ)

=
p2
θ

2m(R2 + r2 − 2Rr cos θ)
+ mg(R − r cos θ)

Because dH/dt = ∂L/∂t = 0, we can plot the trajectory that stays on the surface of
constant energy E

H (θ, pθ ) =
p2
θ

2m(R2 + r2 − 2Rr cos θ)
+ mg(R − r cos θ) = E.
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When E = mg(R − r), the “surface” of constant energy stays at the origin, which
corresponds to the trivial state that the point mass stays at the lowest point forever. For
mg(R − r) < E < mg(R + r), the trajectory is a bounded oscillation, with turning
points at θ0 = ± cos−1((mgR − E)/(mgr)). For E > mg(R + r), the total energy is
large enough for the wheel to keep moving forward/backward. Since this motion has a
period 2π, the plot with the range (−π, π) of θ is enough for expressing the motion.
The direction of the flow in phase space can be determined by the equation

θ̇ =
pθ

m(R2 + r2 − 2Rr cos θ)
,

which indicates that the change of θ depends on the sign of pθ .
From the discussion above, we know that the change of the topology of the orbits occurs
at E∗ = mg(R + r).

3. Switching to the dimensionless time, the equations of motion become

cos θ θ̈ = sin θ α̇2 − cos2 θ cos α

cos θ α̈ = −
(
sin θ + 2

cos2 θ

sin θ

)
θ̇α̇ +

cos3 θ

sin θ
sin α .

In the small angle approximation where θ(t) = π/2 + β(t) and both β(t) and α(t) are
small, we can expand cos θ and sin θ as

cos θ = cos(π/2 + β) = − sin β = −β +O(β3)

sin θ = sin(π/2 + β) = cos β = 1 − β2/2 +O(β4).

Substituting these expressions back to the equations of motion and only keeping the
relevant lowest-order terms, we have

−β β̈ = α̇2 − β2 (2)
βα̈ = β̇α̇. (3)

We first observe that the system of equations becomes

β β̈ = β2

0 = 0

when α̇ = 0, which gives us the first two types of solutions:

(a) α = α0 and β = 0, where α0 is a small constant. The resulting potential energy
V = ε sin θ cos α remains constant. From energy conservation we can see that
this solution amounts to the parallel transport of the dipole around the equator of
the sphere at constant angular velocity φ̇.
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(b) α = α0 and β̈ = β. We can solve β(t) = β0e−t . Substituting α(t) and β(t) back
to the non-holonomic constraint

α̇ + cos θ φ̇ = 0 ,

we have φ̇ = 0 and therefore φ(t) = φ0. This solution describes the longitudinal
motion of the dipole towards the equator of the sphere.

For α̇ , 0, β , 0, and we can rearrange Equation (3) to

β̇

β
=
α̈

α̇
,

which gives the relation

α̇(t) = cβ(t).

Substituting this relation to the non-holonomic constraint, we have

β(t)(c − φ̇) = 0,

and we can solve φ(t) = ct + φ0. Also, Equation (2) becomes

β̈ = −(c2 − 1) β,

from which we obtain the other three types of solutions:

(c) c > 1:

β(t) = β1 cos(
√

c2 − 1 t) + β2 sin(
√

c2 − 1 t).

In this solution, the dipole moves longitudinally at constant angular velocity φ̇ = c
while oscillates sinusoidally about the equator in the latitudinal direction.

(d) c = 1:

β(t) = β1t + β2.

This solution describes a dipolemoving longitudinally at constant angular velocity
φ̇ = c while moving away from the equator at constant rate β1. We notice that
this solution fails to describe the motion of the dipole once β(t) violates the small
angle approximation.

(e) c < 1:

β(t) = β1 exp(
√

1 − c2 t) + β2 exp(−
√

1 − c2 t).

The dipole also moves longitudinally at constant angular velocity φ̇ = c whereas
moves away from the equator at an exponential rate. This solution also becomes
invalid once β(t) breaks the small angle approximation.
Notice that when c → 0,

α̇(t) → 0
β(t) → β1et + β2e−t ,

which gives us the solutions obtained in (a) (β1 = β2 = 0) and (b) (β1 = 0).


