Assignment 7 solutions

1. Under the continuous transformation with the parameter s, the Lagrangian can be expressed as

$$
L(s)=L\left(q_{1}(t+s), \cdots, q_{N}(t+s) ; \dot{q}_{1}(t+s), \cdots, \dot{q}_{N}(t+s)\right)
$$

Since L is constructed from functions (q 's and \dot{q} 's) all having the argument $s+t$, by the chain rule of calculus we can infer that

$$
\begin{equation*}
\left.\frac{d L}{d s}\right|_{s=0}=\left.\sum_{k=1}^{N}\left(\frac{\partial L}{\partial q_{k}} \dot{q}_{k}+\frac{\partial L}{\partial \dot{q}_{k}} \ddot{q}_{k}\right)\right|_{t}=\frac{d L}{d t} . \tag{1}
\end{equation*}
$$

We can hence identify the function F as the Lagrangian L, apart from an irrelevant constant.
Using the Euler-Lagrange equation, we can rewrite (1) as

$$
\begin{aligned}
\sum_{k=1}^{N}\left(\frac{\partial L}{\partial q_{k}} \dot{q}_{k}+\frac{\partial L}{\partial \dot{q}_{k}} \ddot{q}_{k}\right) & =\sum_{k=1}^{N}\left(\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{k}}\right) \dot{q}_{k}+\frac{\partial L}{\partial \dot{q}_{k}} \ddot{q}_{k}\right) \\
& =\frac{d}{d t}\left(\sum_{k=1}^{N} \frac{\partial L}{\partial \dot{q}_{k}} \dot{q}_{k}\right) \\
& =\frac{d}{d t}\left(\sum_{k=1}^{N} p_{k} \dot{q}_{k}\right)=\frac{d L}{d t}
\end{aligned}
$$

We can hence define a conserved quantity I

$$
I \equiv \sum_{k=1}^{N} p_{k} \dot{q}_{k}-L
$$

so that $d I / d t=0$. This quantity I is exactly the Hamiltonian H we defined several weeks ago.
2.

From Assignment 4, the Lagrangian of the system is given by

$$
L=\frac{1}{2} m\left(R^{2}+r^{2}-2 R r \cos \theta\right) \dot{\theta}^{2}-m g(R-r \cos \theta),
$$

with the conjugate momentum

$$
p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m\left(R^{2}+r^{2}-2 R r \cos \theta\right) \dot{\theta}
$$

The Hamiltonian is hence given by

$$
\begin{aligned}
H & =\dot{\theta} \frac{\partial L}{\partial \dot{\theta}}-L \\
& =\frac{1}{2} m\left(R^{2}+r^{2}-2 R r \cos \theta\right) \dot{\theta}^{2}+m g(R-r \cos \theta) \\
& =\frac{p_{\theta}^{2}}{2 m\left(R^{2}+r^{2}-2 R r \cos \theta\right)}+m g(R-r \cos \theta)
\end{aligned}
$$

Because $d H / d t=\partial L / \partial t=0$, we can plot the trajectory that stays on the surface of constant energy E

$$
H\left(\theta, p_{\theta}\right)=\frac{p_{\theta}^{2}}{2 m\left(R^{2}+r^{2}-2 R r \cos \theta\right)}+m g(R-r \cos \theta)=E .
$$

When $E=m g(R-r)$, the "surface" of constant energy stays at the origin, which corresponds to the trivial state that the point mass stays at the lowest point forever. For $m g(R-r)<E<m g(R+r)$, the trajectory is a bounded oscillation, with turning points at $\theta_{0}= \pm \cos ^{-1}((m g R-E) /(m g r))$. For $E>m g(R+r)$, the total energy is large enough for the wheel to keep moving forward/backward. Since this motion has a period 2π, the plot with the range $(-\pi, \pi)$ of θ is enough for expressing the motion.
The direction of the flow in phase space can be determined by the equation

$$
\dot{\theta}=\frac{p_{\theta}}{m\left(R^{2}+r^{2}-2 R r \cos \theta\right)},
$$

which indicates that the change of θ depends on the sign of p_{θ}.
From the discussion above, we know that the change of the topology of the orbits occurs at $E^{*}=m g(R+r)$.
3. Switching to the dimensionless time, the equations of motion become

$$
\begin{aligned}
& \cos \theta \ddot{\theta}=\sin \theta \dot{\alpha}^{2}-\cos ^{2} \theta \cos \alpha \\
& \cos \theta \ddot{\alpha}=-\left(\sin \theta+2 \frac{\cos ^{2} \theta}{\sin \theta}\right) \dot{\theta} \dot{\alpha}+\frac{\cos ^{3} \theta}{\sin \theta} \sin \alpha .
\end{aligned}
$$

In the small angle approximation where $\theta(t)=\pi / 2+\beta(t)$ and both $\beta(t)$ and $\alpha(t)$ are small, we can expand $\cos \theta$ and $\sin \theta$ as

$$
\begin{aligned}
\cos \theta & =\cos (\pi / 2+\beta)=-\sin \beta=-\beta+O\left(\beta^{3}\right) \\
\sin \theta & =\sin (\pi / 2+\beta)=\cos \beta=1-\beta^{2} / 2+O\left(\beta^{4}\right)
\end{aligned}
$$

Substituting these expressions back to the equations of motion and only keeping the relevant lowest-order terms, we have

$$
\begin{align*}
-\beta \ddot{\beta} & =\dot{\alpha}^{2}-\beta^{2} \tag{2}\\
\beta \ddot{\alpha} & =\dot{\beta} \dot{\alpha} . \tag{3}
\end{align*}
$$

We first observe that the system of equations becomes

$$
\begin{aligned}
\beta \ddot{\beta} & =\beta^{2} \\
0 & =0
\end{aligned}
$$

when $\dot{\alpha}=0$, which gives us the first two types of solutions:
(a) $\alpha=\alpha_{0}$ and $\beta=0$, where α_{0} is a small constant. The resulting potential energy $V=\epsilon \sin \theta \cos \alpha$ remains constant. From energy conservation we can see that this solution amounts to the parallel transport of the dipole around the equator of the sphere at constant angular velocity $\dot{\phi}$.
(b) $\alpha=\alpha_{0}$ and $\ddot{\beta}=\beta$. We can solve $\beta(t)=\beta_{0} e^{-t}$. Substituting $\alpha(t)$ and $\beta(t)$ back to the non-holonomic constraint

$$
\dot{\alpha}+\cos \theta \dot{\phi}=0
$$

we have $\dot{\phi}=0$ and therefore $\phi(t)=\phi_{0}$. This solution describes the longitudinal motion of the dipole towards the equator of the sphere.

For $\dot{\alpha} \neq 0, \beta \neq 0$, and we can rearrange Equation (3) to

$$
\frac{\dot{\beta}}{\beta}=\frac{\ddot{\alpha}}{\dot{\alpha}},
$$

which gives the relation

$$
\dot{\alpha}(t)=c \beta(t) .
$$

Substituting this relation to the non-holonomic constraint, we have

$$
\beta(t)(c-\dot{\phi})=0
$$

and we can solve $\phi(t)=c t+\phi_{0}$. Also, Equation (2) becomes

$$
\ddot{\beta}=-\left(c^{2}-1\right) \beta,
$$

from which we obtain the other three types of solutions:
(c) $c>1$:

$$
\beta(t)=\beta_{1} \cos \left(\sqrt{c^{2}-1} t\right)+\beta_{2} \sin \left(\sqrt{c^{2}-1} t\right)
$$

In this solution, the dipole moves longitudinally at constant angular velocity $\dot{\phi}=c$ while oscillates sinusoidally about the equator in the latitudinal direction.
(d) $c=1$:

$$
\beta(t)=\beta_{1} t+\beta_{2} .
$$

This solution describes a dipole moving longitudinally at constant angular velocity $\dot{\phi}=c$ while moving away from the equator at constant rate β_{1}. We notice that this solution fails to describe the motion of the dipole once $\beta(t)$ violates the small angle approximation.
(e) $c<1$:

$$
\beta(t)=\beta_{1} \exp \left(\sqrt{1-c^{2}} t\right)+\beta_{2} \exp \left(-\sqrt{1-c^{2}} t\right)
$$

The dipole also moves longitudinally at constant angular velocity $\dot{\phi}=c$ whereas moves away from the equator at an exponential rate. This solution also becomes invalid once $\beta(t)$ breaks the small angle approximation.
Notice that when $c \rightarrow 0$,

$$
\begin{aligned}
& \dot{\alpha}(t) \rightarrow 0 \\
& \beta(t) \rightarrow \beta_{1} e^{t}+\beta_{2} e^{-t}
\end{aligned}
$$

which gives us the solutions obtained in (a) $\left(\beta_{1}=\beta_{2}=0\right)$ and (b) $\left(\beta_{1}=0\right)$.

