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Assignment 5 solutions

1. The Hamiltonian H is given by

H =
∑

k

q̇k
∂L
∂q̇k
− L

=
∑

k

q̇k
∂(T − V )
∂q̇k

− (T − V )

=
∑

k

q̇k
∂T
∂q̇k
− (T − V ) ,

because V is independent of the generalized velocities. Taking the partial derivative of
kinetic energy T with respect to the general velocities, we have

∂T
∂q̇k
=

1
2

∑
i

mi
∂

∂q̇k
(ṙi · ṙi)

=
∑

i

mi ṙi ·
∂ṙi

∂q̇k
.

Since all the particle positions in the system only depend on the general coordinates,

ṙi =
∑

k

∂ri

∂qk
q̇k ,

and hence
∂ṙi

∂q̇k
=
∂ri

∂qk
.

Substituting these back to the expression of the Hamiltonian, we obtain

H =
∑

k

q̇k
∂T
∂q̇k
− (T − V )

=
∑

k

q̇k



∑
i

mi ṙi ·
∂ṙi

∂q̇k


− (T − V )

=
∑

k

q̇k



∑
i

mi ṙi ·
∂ri

∂qk


− (T − V )

=
∑

i

mi ṙi ·
∑

k

∂ri

∂qk
q̇k − (T − V )

=
∑

i

mi ṙi · ṙi − (T − V )

= 2T − (T − V ) = T + V = E .
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2. We first define the ‘Lagrangian’ of the brachistochrone problem as

L(y, y′; x) =

√
1 + y′2

−2gy
,

which is the integrand of the functional T[y]. Because the Lagrangian has no explicit
x dependence, its associated Hamiltonian must be a constant with respect to x. We
denote this constant as −ε . Therefore,

H = y′
∂L
∂y′
− L

= −
1√

−2gy
√

1 + y′2
= −ε ,

and we obtain the first-order equation of motion

2gy(1 + y′2)ε2 + 1 = 0 .

With the parametrization of x and y

x = Rθ − R sin θ
y = −R + R cos θ ,

we have

y′ =
dy
dx
=

dy
dθ

(
dx
dθ

)−1
=
− sin θ

1 − cos θ
.

Substituting y and y′ back to the equation of motion, we can solve ε as

ε =
1

2
√
gR

.

The above figure shows the brachistochrone curve with θ ranging from 0 to 2π. To
have the span of x be l, we need x(2π) − x(0) = 2πR = l, or R = l/(2π).
Finally, plugging the parametrization of x and y back to L(y, y′; x), we have

L(y, y′; x) =
1
√
gR

1
1 − cos θ

.
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The transit-time functional thus becomes

T[y] =
∫ l

0
L(y, y′; x)dx

=

∫ 2π

0

(
1
√
gR

1
1 − cos θ

)
(R − R cos θ) dθ

= 2π

√
R
g
=

√
2πl
g

.

3. Imagine the wall to be a mirror. Finding a minimum-time path from the point reaching
the wall at a distance l away is hence equivalent to finding a minimum-time path from
the point reaching another point of the same height at a distance 2l away, with the
condition that the new path is symmetric at x = l. We know that the brachistochrone
curve is the only path that satisfies these two conditions. Therefore, the path from the
point to the wall should be the first half of the brachistochrone curve; otherwise there
would be another shorter-time solution to the original problem.
Using the result of Problem 2, the minimum time for the particle to reach the wall is
therefore

1
2

√
2π(2l)

g
=

√
πl
g
.

Note that we need to plug in 2l instead of l for the distance between the two points into
the result of Problem 2.

4. (a) Substituting the Lagrangian L = 1
2 mẋ2 − 1

2 mω2
0x2 into the Euler-Lagrange equa-

tion, we can solve the equation of motion of the extremal trajectory x? as

ẍ? + ω2
0x? = 0.

The action

S[x] = S[x? + δx]

=

∫ T

0

[
1
2

m( ẋ? + δ ẋ)2 −
1
2

mω2
0(x? + δx)2

]
dt

=

∫ T

0
(
1
2

mẋ?2 −
1
2

mω2
0x?2) dt +

∫ T

0
(
1
2

mδ ẋ2 −
1
2

mω2
0δx2) dt

+

∫ T

0
mẋ?δ ẋ dt −

∫ T

0
mω2

0x?δx dt .

Integrating by part the third term, we have∫ T

0
mẋ?δ ẋ dt = mẋ?δx

����
T

0
−

∫ T

0
mẍ?δx dt .
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The first term goes to zero because of the boundary condition δx(0) = δx(T ) = 0,
and the action becomes

S[x] =
∫ T

0
(
1
2

mẋ?2 −
1
2

mω2
0x?2) dt +

∫ T

0
(
1
2

mδ ẋ2 −
1
2

mω2
0δx2) dt

−

∫ T

0
m( ẍ? + ω2

0x?)δx dt.

Notice that the last term equals to zero, because its integrand satisfies the equation
of motion. Therefore, we obtain the relation S[x] = S[x?] + δS.

(b)

δS =
1
2

m∆2
∫ T

0

[
(

Nπ
T

)2 cos2(
Nπt
T

) − ω2
0 sin2(

Nπt
T

)
]

dt

=
1
2

m∆2
∫ T

0

[
(

Nπ
T

)2 1 + cos(2Nπt/T )
2

− ω2
0

1 − cos(2Nπt/T )
2

]
dt

=
1
4

mT [(
Nπ
T

)2 − ω2
0] ∆2

≡ cN∆
2.

For the case ω0T > π,

cN ≡
1
4

mT [(
Nπ
T

)2 − ω2
0]

=
1
4

mT (
Nπ
T
− ω0)(

Nπ
T
+ ω0).

Therefore, the sign of cN can be either positive of negative, depending on the
value of N . This means that δS can be either positive or negative along the
special path δx. Hence, the extremal trajectory x? given by Hamilton’s principle
is neither a maximum nor a minimum, but a saddle point.


